最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Calculus] Integral of Inverse Tangent

2021-10-07 09:49 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

This problem is a good exercise on integration by parts and integration by substitution.
Compute the integral

%20%5Cint%20%5Carctan(x)%20dx

【Solution】

Step 1:Integration by Parts

Let u%20%3D%20%5Carctan(x) and %20dv%20%3D%20(1)dx.

Then du%20%3D%20%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D%20dx%20 and v%20%3D%20x%20.

By the integration by parts

%5Cint%20udv%20%3D%20uv%20-%20%5Cint%20vdu

we get

%5Cint%20%5Carctan(x)%20dx%20%20%3D%20%5Carctan(x)%5Ccdot%20x%20-%20%5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx


Step 2:Integration by Substitution

Now focus on the integral %5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx%20. Use the substitution method for this integral.

Let u%20%3D%201%20%2Bx%5E2, then du%20%3D%202x%20dx.

Therefore,

%5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cint%20%5Cfrac%7B1%7D%7Bu%7D%20du%20

%5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cln%7C1%2Bx%5E2%7C


Consequently, the complete integral is

%20%5Cint%20%5Carctan(x)%20dx%20%3D%20x%5Carctan(x)%20-%20%5Cfrac%7B1%7D%7B2%7D%20%5Cln%7C1%2Bx%5E2%7C%20%2B%20C

[Calculus] Integral of Inverse Tangent的評論 (共 條)

分享到微博請遵守國家法律
遂平县| 繁峙县| 乡宁县| 花垣县| 罗定市| 台山市| 茂名市| 通山县| 古田县| 四子王旗| 梅州市| 旌德县| 双峰县| 鹤岗市| 南漳县| 双辽市| 仁寿县| 大安市| 桓仁| 富顺县| 瑞安市| 铁力市| 榆社县| 禄丰县| 沂水县| 巴马| 甘德县| 鄂伦春自治旗| 丘北县| 宜章县| 墨玉县| 朝阳县| 家居| 忻州市| 安康市| 青海省| 葫芦岛市| 阿克苏市| 安康市| 宿松县| 旺苍县|