最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

KDD2023丨表征學(xué)習(xí)論文合集

2023-07-24 15:00 作者:AMiner科技  | 我要投稿

ACM SIGKDD(國(guó)際數(shù)據(jù)挖掘與知識(shí)發(fā)現(xiàn)大會(huì),簡(jiǎn)稱KDD)會(huì)議始于1989年,是數(shù)據(jù)挖掘領(lǐng)域歷史最悠久、規(guī)模最大的國(guó)際頂級(jí)學(xué)術(shù)會(huì)議,也是首個(gè)引入大數(shù)據(jù)、數(shù)據(jù)科學(xué)、預(yù)測(cè)分析、眾包等概念的會(huì)議,每年吸引了大量數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)、大數(shù)據(jù)和人工智能等領(lǐng)域的研究學(xué)者、從業(yè)人員參與。

AMiner通過(guò)AI技術(shù),對(duì) KDD2023 收錄的會(huì)議論文進(jìn)行了分類整理,今日分享的是表征學(xué)習(xí)主題論文!(由于篇幅關(guān)系,本篇只展現(xiàn)部分論文,點(diǎn)擊閱讀原文可直達(dá)KDD頂會(huì)頁(yè)面查看所有論文)

1.DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection

鏈接:aminer.cn/pub/6492753bd

2.GENERALIZED MATRIX LOCAL LOW RANK REPRESENTATION BY RANDOM PROJECTION AND SUBMATRIX PROPAGATION

鏈接:aminer.cn/pub/6433f6bc9

3.Joint Pre-training and Local Re-training: Transferable Representation Learning on Multi-source Knowledge Graphs

鏈接:aminer.cn/pub/647eaf51d

4.Task Relation-aware Continual User Representation Learning

鏈接:aminer.cn/pub/647eaf35d

5.Dense Representation Learning and Retrieval for Tabular Data Prediction

鏈接:aminer.cn/pub/64af99fd3

6.Efficient and Effective Edge-wise Graph Representation Learning

鏈接:aminer.cn/pub/64af99fe3

7.CARL-G: Clustering-Accelerated Representation Learning on Graphs

鏈接:aminer.cn/pub/64af99fe3

8.LightPath: Lightweight and Scalable Path Representation Learning

鏈接:aminer.cn/pub/64af9a0b3

9.Urban Region Representation Learning with OpenStreetMap Building Footprints

鏈接:aminer.cn/pub/64af9a0b3

10.Representation Learning on Hyper-Relational and Numeric Knowledge Graphs with Transformers

鏈接:aminer.cn/pub/647572e0d

11.Expert Knowledge-Aware Image Difference Graph Representation Learning for Difference-Aware Medical Visual Question Answering

鏈接:aminer.cn/pub/64af9a023

12.DyTed: Disentangled Representation Learning for Discrete-time Dynamic Graph

鏈接:aminer.cn/pub/64af9a093

13.Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous Text-Rich Networks

鏈接:aminer.cn/pub/64af9a093

如何使用ChatPaper讀文獻(xiàn)?

為了讓更多科研人更高效的獲取文獻(xiàn)知識(shí),AMiner基于GLM-130B大模型能力,開(kāi)發(fā)了Chatpaper,幫助科研人快速提高檢索、閱讀論文效率,獲取最新領(lǐng)域研究動(dòng)態(tài),讓科研工作更加游刃有余。

ChatPaper是一款集檢索、閱讀、知識(shí)問(wèn)答于一體的對(duì)話式私有知識(shí)庫(kù),AMiner希望通過(guò)技術(shù)的力量,讓大家更加高效地獲取知識(shí)。

ChatPaper:aminer.cn/chat/g

KDD頂會(huì):https://www.aminer.cn/conf/5ea1b22bedb6e7d53c00c41b/KDD2023

KDD2023丨表征學(xué)習(xí)論文合集的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
长汀县| 虞城县| 炎陵县| 和田县| 宜都市| 曲沃县| 永定县| 迁西县| 甘孜| 澎湖县| 延川县| 二连浩特市| 广德县| 成安县| 鲜城| 永康市| 辽中县| 出国| 图片| 精河县| 当涂县| 洛南县| 通道| 土默特左旗| 陆川县| 滦平县| 桂林市| 洛隆县| 赣州市| 班玛县| 台中市| 米泉市| 新兴县| 民县| 大方县| 象山县| 陵水| 万宁市| 措美县| 古浪县| 雷山县|