最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

量子場論(五):實(shí)標(biāo)量場的哈密頓量與總動(dòng)量

2022-11-05 19:35 作者:我的世界-華汁  | 我要投稿


實(shí)標(biāo)量場的哈密頓量密度為:

%5Cmathcal%20H%3D%5Cpi%5Cdot%5Cphi-%5Cmathcal%20L%3D%5Cfrac12%5Cpi%5E2%2B%5Cfrac12(%5Cnabla%5Cphi)%5E2%2B%5Cfrac12m%5E2%5Cphi%5E2.%5Ctag%7B5.1%7D

對全空間積分得到哈密頓算符:

%5Cbegin%7Balign%7D%5Chat%20H%26%3D%5Cint%5Cmathcal%20H%5Cmathrm%20d%5E3x%3D%5Cfrac12%5Cint%5B%5Cpi%5E2%2B(%5Cnabla%5Cphi)%5E2%2Bm%5E2%5Cphi%5E2%5D%5Cmathrm%20d%5E3x%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac1%7B(2%5Cpi)%5E6%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20q%7D%7D%5C%7B%5B(-iE_%5Cmathbf%20p)(-iE_%5Cmathbf%20q)%2B(i%5Cmathbf%20p)%5Ccdot(i%5Cmathbf%20q)%5D(a_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D-a%5E%5Cdagger_%5Cmathbf%20pe%5E%7Bip%5Ccdot%20x%7D)(a_%5Cmathbf%20qe%5E%7B-iq%5Ccdot%20x%7D-a%5E%5Cdagger_%5Cmathbf%20qe%5E%7Biq%5Ccdot%20x%7D)%2Bm%5E2(a_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D%2Ba%5E%5Cdagger_%5Cmathbf%20pe%5E%7Bip%5Ccdot%20x%7D)(a_%5Cmathbf%20qe%5E%7B-iq%5Ccdot%20x%7D%2Ba%5E%5Cdagger_%5Cmathbf%20qe%5E%7Biq%5Ccdot%20x%7D)%5C%7D%5Cmathrm%20d%5E3x%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3q%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac1%7B(2%5Cpi)%5E6%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20q%7D%7D%5C%7B(E_%5Cmathbf%20pE_%5Cmathbf%20q%2B%5Cmathbf%20p%5Ccdot%5Cmathbf%20q%2Bm%5E2)%5Ba_%5Cmathbf%20pa_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7B-i(p-q)%5Ccdot%20x%7D%2Ba_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20qe%5E%7Bi(p-q)%5Ccdot%20x%7D%5D%2B(-E_%5Cmathbf%20pE_%5Cmathbf%20q-%5Cmathbf%20p%5Ccdot%5Cmathbf%20q%2Bm%5E2)%5Ba_%5Cmathbf%20pa_%5Cmathbf%20qe%5E%7B-i(p%2Bq)%5Ccdot%20x%7D%2Ba_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7Bi(p%2Bq)%5Ccdot%20x%7D%5D%5C%7D%5Cmathrm%20d%5E3x%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3q%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20q%7D%7D%5C%7B%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)(E_%5Cmathbf%20pE_%5Cmathbf%20q%2B%5Cmathbf%20p%5Ccdot%5Cmathbf%20q%2Bm%5E2)%5Ba_%5Cmathbf%20pa_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7B-i(p%5E0-q%5E0)t%7D%2Ba_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20qe%5E%7Bi(p%5E0-q%5E0)t%7D%5D%2B%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p%2B%5Cmathbf%20q)(-E_%5Cmathbf%20pE_%5Cmathbf%20q-%5Cmathbf%20p%5Ccdot%5Cmathbf%20q%2Bm%5E2)%5Ba_%5Cmathbf%20pa_%5Cmathbf%20qe%5E%7B-i(p%5E0%2Bq%5E0)t%7D%2Ba_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7Bi(p%5E0%2Bq%5E0)t%7D%5D%5C%7D%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3q%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac1%7B(2%5Cpi)%5E32E_%5Cmathbf%20p%7D%5B(E_%5Cmathbf%20p%5E2%2B%7C%5Cmathbf%20p%7C%5E2%2Bm%5E2)(a_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger%20%2Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p)%2B(-E_%5Cmathbf%20p%5E2%2B%7C%5Cmathbf%20p%7C%5E2%2Bm%5E2)(a_%5Cmathbf%20pa_%7B-%5Cmathbf%20p%7De%5E%7B-2iE_%5Cmathbf%20pt%7D%2Ba%5E%5Cdagger_%5Cmathbf%20pa%5E%5Cdagger%20_%7B-%5Cmathbf%20p%7De%5E%7B2iE_%5Cmathbf%20pt%7D)%5D%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DE_%5Cmathbf%20p(a_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger%20%2Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p)%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DE_%5Cmathbf%20p%5B2a%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%20%2B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20p)%5D%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DE_%5Cmathbf%20pa%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%5Cmathrm%20d%5E3p%2B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf0)%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D%5Cfrac%7BE_%5Cmathbf%20p%7D2%5Cmathrm%20d%5E3p.%5Cend%7Balign%7D%5Ctag%7B5.2%7D

這個(gè)結(jié)果可以看作是一維簡諧振子的哈密頓量向無窮多自由度的推廣。

%5Chat%20N_%5Cmathbf%20p%5Cequiv%20a%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p.%5Ctag%7B5.3%7D

是三維動(dòng)量空間中%5Cmathbf%20p處的粒子數(shù)密度算符。

(5.2)式最后一行的第一項(xiàng)是所有粒子貢獻(xiàn)的能量之和。而第二項(xiàng),如果積分是針對于全空間的話,那么該項(xiàng)就是一個(gè)無窮大的數(shù)(不是算符),是真空的零點(diǎn)能。如果不考慮引力現(xiàn)象,那么零點(diǎn)能并不重要,重要的是兩個(gè)能量的差。都有零點(diǎn)能就相當(dāng)于沒有。

哈密頓算符與產(chǎn)生湮滅算符的對易關(guān)系為:

%5B%5Chat%20H%2Ca_%5Cmathbf%20p%5E%5Cdagger%5D%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DE_%5Cmathbf%20qa_%5Cmathbf%20q%5E%5Cdagger%5Ba_%5Cmathbf%20q%2Ca_%5Cmathbf%20p%5E%5Cdagger%5D%5Cmathrm%20d%5E3q%3D%5Cint%20E_%5Cmathbf%20qa_%5Cmathbf%20q%5E%5Cdagger%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20q-%5Cmathbf%20p)%5Cmathrm%20d%5E3q%3DE_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger.%5Ctag%7B5.4%7D

%5B%5Chat%20H%2Ca_%5Cmathbf%20p%5D%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DE_%5Cmathbf%20q%5Ba%5E%5Cdagger_%5Cmathbf%20q%2Ca_%5Cmathbf%20p%5Da_%5Cmathbf%20q%5Cmathrm%20d%5E3q%3D-%5Cint%20E_%5Cmathbf%20qa_%5Cmathbf%20q%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20q-%5Cmathbf%20p)%5Cmathrm%20d%5E3q%3D-E_%5Cmathbf%20pa_%5Cmathbf%20p.%5Ctag%7B5.5%7D

因此:

%5Chat%20Ha_%5Cmathbf%20p%5E%5Cdagger%3Da_%5Cmathbf%20p%5E%5Cdagger%5Chat%20H%2BE_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger%5C%20%2C%5C%20%5Chat%20Ha_%5Cmathbf%20p%3Da_%5Cmathbf%20p%5Chat%20H-E_%5Cmathbf%20pa_%5Cmathbf%20p.%5Ctag%7B5.6%7D

設(shè)%7CE%5Crangle是哈密頓算符的本征態(tài),本征值為E%2C則有:

%5Chat%20H%7CE%5Crangle%3DE%7CE%5Crangle.%5Ctag%7B5.7%7D

從而:

%5Chat%20Ha_%5Cmathbf%20p%5E%5Cdagger%7CE%5Crangle%3D(a_%5Cmathbf%20p%5E%5Cdagger%5Chat%20H%2BE_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger)%7CE%5Crangle%3D(E%2BE_%5Cmathbf%20p)a_%5Cmathbf%20p%5E%5Cdagger%7CE%5Crangle.%5Ctag%7B5.8%7D

%5Chat%20Ha_%5Cmathbf%20p%7CE%5Crangle%3D(a_%5Cmathbf%20p%5Chat%20H-E_%5Cmathbf%20pa_%5Cmathbf%20p)%7CE%5Crangle%3D(E-E_%5Cmathbf%20p)a_%5Cmathbf%20p%7CE%5Crangle.%5Ctag%7B5.9%7D

可見產(chǎn)生算符的作用就是讓能量本征值增加E_%5Cmathbf%20p%2C而湮滅算符的作用是讓能量本征值減少E_%5Cmathbf%20p.

實(shí)標(biāo)量場的總動(dòng)量算符為:

%5Cbegin%7Balign%7D%5Chat%7B%5Cmathbf%20p%7D%26%3D-%5Cint%5Cpi%5Cnabla%5Cphi%5Cmathrm%20d%5E3x%3D-%5Cint%5Cfrac%7B1%7D%7B(2%5Cpi)%5E6%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20q%7D%7D(-iE_%5Cmathbf%20p)(a_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D-a_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D)(i%5Cmathbf%20q)(a_%5Cmathbf%20qe%5E%7B-iq%5Ccdot%20x%7D-a_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7Biq%5Ccdot%20x%7D)%5Cmathrm%20d%5E3x%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3q%5C%5C%26%3D-%5Cint%5Cfrac%7BE_%5Cmathbf%20p%5Cmathbf%20q%7D%7B(2%5Cpi)%5E6%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20q%7D%7D%5B-a_%5Cmathbf%20pa_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7B-i(p-q)%5Ccdot%20x%7D-a%5E%5Cdagger%20_%5Cmathbf%20pa_%5Cmathbf%20qe%5E%7Bi(p-q)%5Ccdot%20x%7D%2Ba_%5Cmathbf%20pa_%5Cmathbf%20q%20e%5E%7B-i(p%2Bq)%5Ccdot%20x%7D%2Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7Bi(p%2Bq)%5Ccdot%20x%7D%5D%5Cmathrm%20d%5E3x%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3q%5C%5C%26%3D-%5Cint%5Cfrac%7BE_%5Cmathbf%20p%5Cmathbf%20q%7D%7B(2%5Cpi)%5E3%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20q%7D%7D%5C%7B-%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)%5Ba_%5Cmathbf%20pa_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7B-i(p%5E0-q%5E0)t%7D%2Ba%5E%5Cdagger%20_%5Cmathbf%20pa_%5Cmathbf%20qe%5E%7Bi(p%5E0-q%5E0)t%7D%5D%2B%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p%2B%5Cmathbf%20q)%5Ba_%5Cmathbf%20pa_%5Cmathbf%20q%20e%5E%7B-i(p%5E0%2Bq%5E0)t%7D%2Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7Bi(p%5E0%2Bq%5E0)t%7D%5D%5C%7D%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3q%5C%5C%26%3D%5Cint%5Cfrac%7BE_%5Cmathbf%20p%5Cmathbf%20p%7D%7B(2%5Cpi)%5E32E_%5Cmathbf%20p%7D(a_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger%2Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%2Ba_%5Cmathbf%20pa_%7B-%5Cmathbf%20p%7De%5E%7B-2iE_%5Cmathbf%20pt%7D%2Ba%5E%5Cdagger_%5Cmathbf%20pa%5E%5Cdagger_%7B-%5Cmathbf%20p%7De%5E%7B2iE_%5Cmathbf%20pt%7D)%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac%7B1%7D%7B(2%5Cpi)%5E3%7D%5Cmathbf%20p(a_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger%2Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%2Ba_%5Cmathbf%20pa_%7B-%5Cmathbf%20p%7De%5E%7B-2iE_%5Cmathbf%20pt%7D%2Ba%5E%5Cdagger_%5Cmathbf%20pa%5E%5Cdagger_%7B-%5Cmathbf%20p%7De%5E%7B2iE_%5Cmathbf%20pt%7D)%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac%7B1%7D%7B(2%5Cpi)%5E3%7D%5Cmathbf%20p(a_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger%2Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p)%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac%7B1%7D%7B(2%5Cpi)%5E3%7D%5Cmathbf%20p%5B2a%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%2B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%200)%5D%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cint%5Cfrac%7B1%7D%7B(2%5Cpi)%5E3%7D%5Cmathbf%20pa%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%5Cmathrm%20d%5E3p%2B%5Cfrac12%5Cdelta%5E%7B(3)%7D(%5Cmathbf%200)%5Cint%5Cmathbf%20p%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cint%5Cfrac%7B1%7D%7B(2%5Cpi)%5E3%7D%5Cmathbf%20pa%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%5Cmathrm%20d%5E3p.%5Cend%7Balign%7D%5Ctag%7B5.10%7D

設(shè)%7C%5Cmathbf%20p%5Crangle是哈密頓算符的本征態(tài),本征值為%5Cmathbf%20p%2C則有:

%5Chat%7B%5Cmathbf%20p%7D%7C%5Cmathbf%20p%5Crangle%3D%5Cmathbf%20p%7C%5Cmathbf%20p%5Crangle.%5Ctag%7B5.11%7D

動(dòng)量算符與產(chǎn)生湮滅算符的對易子為:

%5B%5Chat%7B%5Cmathbf%20p%7D%2Ca_%5Cmathbf%20p%5E%5Cdagger%5D%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D%5Cmathbf%20qa_%5Cmathbf%20q%5E%5Cdagger%5Ba_%5Cmathbf%20q%2Ca_%5Cmathbf%20p%5E%5Cdagger%5D%5Cmathrm%20d%5E3q%3D%5Cint%5Cmathbf%20qa_%5Cmathbf%20q%5E%5Cdagger%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20q-%5Cmathbf%20p)%5Cmathrm%20d%5E3q%3D%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger.%5Ctag%7B5.12%7D

%5B%5Chat%7B%5Cmathbf%20p%7D%2Ca_%5Cmathbf%20p%5D%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D%5Cmathbf%20q%5Ba%5E%5Cdagger_%5Cmathbf%20q%2Ca_%5Cmathbf%20p%5Da_%5Cmathbf%20q%5Cmathrm%20d%5E3q%3D-%5Cint%5Cmathbf%20qa_%5Cmathbf%20q%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20q-%5Cmathbf%20p)%5Cmathrm%20d%5E3q%3D-%5Cmathbf%20pa_%5Cmathbf%20p.%5Ctag%7B5.13%7D

也就是說:

%5Chat%7B%5Cmathbf%20p%7Da_%5Cmathbf%20p%5E%5Cdagger%3Da_%5Cmathbf%20p%5E%5Cdagger%5Chat%7B%5Cmathbf%20p%7D%2B%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger%5C%20%2C%5C%20%5Chat%7B%5Cmathbf%20p%7Da_%5Cmathbf%20p%3Da_%5Cmathbf%20p%5Chat%7B%5Cmathbf%20p%7D-%5Cmathbf%20pa_%5Cmathbf%20p.%5Ctag%7B5.14%7D

從而:

%5Chat%7B%5Cmathbf%20p%7Da_%5Cmathbf%20p%5E%5Cdagger%7C%7B%5Cmathbf%20q%7D%5Crangle%3D(a_%5Cmathbf%20p%5E%5Cdagger%5Chat%7B%5Cmathbf%20p%7D%2B%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger)%7C%7B%5Cmathbf%20q%7D%5Crangle%3D(%7B%5Cmathbf%20q%7D%2B%5Cmathbf%20p)a_%5Cmathbf%20p%5E%5Cdagger%7C%7B%5Cmathbf%20q%7D%5Crangle.%5Ctag%7B5.15%7D

%5Chat%7B%5Cmathbf%20p%7Da_%5Cmathbf%20p%7C%7B%5Cmathbf%20q%7D%5Crangle%3D(a_%5Cmathbf%20p%5Chat%7B%5Cmathbf%20p%7D-%5Cmathbf%20pa_%5Cmathbf%20p)%7C%7B%5Cmathbf%20q%7D%5Crangle%3D(%7B%5Cmathbf%20q%7D-%5Cmathbf%20p)a_%5Cmathbf%20p%7C%7B%5Cmathbf%20q%7D%5Crangle.%5Ctag%7B5.16%7D

可見產(chǎn)生算符的作用就是讓動(dòng)量本征值增加%5Cmathbf%20p%2C而湮滅算符的作用是讓動(dòng)量本征值減少%5Cmathbf%20p.

量子場論(五):實(shí)標(biāo)量場的哈密頓量與總動(dòng)量的評論 (共 條)

分享到微博請遵守國家法律
鹤岗市| 石家庄市| 抚宁县| 酉阳| 且末县| 石泉县| 仁寿县| 延安市| 温泉县| 腾冲县| 饶平县| 桓仁| 长岭县| 双柏县| 肥城市| 涡阳县| 黑河市| 资源县| 广元市| 广州市| 马龙县| 开江县| 徐汇区| 凤城市| 武定县| 民丰县| 怀化市| 梅河口市| 鹤峰县| 大足县| 古田县| 淮安市| 灵武市| 宜兰市| 泽库县| 华宁县| 平利县| 雅安市| 鄢陵县| 公安县| 余庆县|