最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

《經(jīng)濟(jì)學(xué)人》雙語:ChatGPT用詞方式引發(fā)了語言學(xué)界的激烈爭論

2023-05-02 13:02 作者:自由英語之路  | 我要投稿

原文標(biāo)題:
Johnson
The language instinct
ChatGPT’s way with words raises questions about how humans acquire language

約翰遜專欄
語言本能
ChatGPT的用詞方式引發(fā)了關(guān)于人類如何習(xí)得語言的問題


It has reignited a debate over the ideas of Noam Chomsky, the world’s most famous linguist
它重新引發(fā)了關(guān)于世界上最著名的語言學(xué)家諾姆-喬姆斯基思想的辯論

[Paragraph 1]
WHEN DEEP BLUE, a chess computer, defeated Garry Kasparov, a world champion, in 1997 many gasped in fear of machines triumphing over mankind.
1997年,當(dāng)國際象棋計算機(jī) "深藍(lán) "擊敗世界冠軍加里-卡斯帕羅夫時,許多人都因機(jī)器戰(zhàn)勝人類而感到恐懼。

In the intervening years, artificial intelligence has done some astonishing things, but none has managed to capture the public imagination in quite the same way.
在此后的幾年里,人工智能做了一些驚人的事情,但沒有一件事能以完全相同的方式吸引公眾的注意力。

Now, though, the astonishment of the Deep Blue moment is back, because computers are employing something that humans consider their defining ability: language.
不過現(xiàn)在,深藍(lán)時刻的震撼場面再次出現(xiàn)了,因為計算機(jī)正在運(yùn)用人類認(rèn)為是其決定性能力的東西:語言。


[Paragraph 2]
Or are they? Certainly, large language models (LLMs), of which the most famous is ChatGPT, produce what looks like impeccable human writing.
或者說他們是這樣嗎?當(dāng)然,大型語言模型中最著名的是ChatGPT,它可以產(chǎn)生似乎無可挑剔的人類寫作。

But a debate has ensued about what the machines are actually doing internally, what it is that humans, in turn, do when they speak—and, inside the academy, about the theories of the world’s most famous linguist, Noam Chomsky.
但是,關(guān)于機(jī)器內(nèi)部實(shí)際做什么、人類在說話時又做什么的爭論隨之而來——在學(xué)術(shù)界,關(guān)于世界上最著名的語言學(xué)家諾姆·喬姆斯基理論的爭論非?;馃?。

[Paragraph 3]
Although Professor Chomsky’s ideas have changed considerably since he rose to prominence in the 1950s, several elements have remained fairly constant.
1950年代,喬姆斯基教授的思想聲名顯赫,雖然現(xiàn)在已經(jīng)發(fā)生了很大變化,但有幾個觀點(diǎn)一直保持不變。

He and his followers argue that human language is different in kind (not just degree of expressiveness) from all other kinds of communication.
他和他的追隨者認(rèn)為,人類語言在種類上(不僅僅是表達(dá)能力的程度)與所有其他種類的交流不同。

All human languages are more similar to each other than they are to, say, whale song or computer code.
所有人類語言彼此之間具有相似性,且比鯨魚的歌聲或計算機(jī)代碼之間的相似性要高。

Professor Chomsky has frequently said a Martian visitor would conclude that all humans speak the same language, with surface variation.
喬姆斯基教授經(jīng)常說,一個來自火星的訪客可能會得出結(jié)論,所有人類都說同一種語言,只是表面有所不同。

[Paragraph 4]
Perhaps most notably, Chomskyan theories hold that children learn their native languages with astonishing speed and ease despite “the poverty of the stimulus”: the sloppy and occasional language they hear in childhood.
或許最值得注意的是,喬姆斯基的理論認(rèn)為,盡管 "刺激的貧乏"(即兒童在童年時期聽到的馬虎和偶然的語言),但孩子們還是以驚人的速度又輕松地學(xué)會了他們的母語。

The only explanation for this can be that some kind of predisposition for language is built into the human brain.
對此的唯一解釋是,人類大腦中內(nèi)置了某種語言功能。

[Paragraph 5]
Chomskyan ideas have dominated the linguistic field of syntax since their birth.
喬姆斯基的思想自誕生以來一直主導(dǎo)著句法語言學(xué)領(lǐng)域。

But many linguists are strident anti-Chomskyans. And some are now seizing on the capacities of LLMs to attack Chomskyan theories anew.
但許多語言學(xué)家都是堅定的反喬姆斯基主義者。而且有些人現(xiàn)在正利用大型語言模型的能力,重新攻擊喬姆斯基的理論。

[Paragraph 6]
Grammar has a hierarchical, nested structure involving units within other units. Words form phrases, which form clauses, which form sentences and so on.
語法具有層次結(jié)構(gòu)、嵌套結(jié)構(gòu),涉及其他單元中的單元。單詞構(gòu)成短語,短語構(gòu)成從句,句子構(gòu)成句子等等。

Chomskyan theory posits a mental operation, “Merge”, which glues smaller units together to form larger ones that can then be operated on further (and so on).
喬姆斯基理論提出了一種心理操作,即 "合并",它將較小的單元粘在一起形成較大的單元,然后可以進(jìn)一步操作(等等)。

In a recent New York Times op-ed, the man himself (now 94) and two co-authors said “we know” that computers do not think or use language as humans do, referring implicitly to this kind of cognition.
在最近的《紐約時報》專欄文章中,他本人(現(xiàn)年94歲)和兩位合著者說,"我們知道 "計算機(jī)不像人類那樣思考或使用語言,暗指這種認(rèn)知攻擊。

LLMs, in effect, merely predict the next word in a string of words.
實(shí)際上,大型語言模型只是預(yù)測一連串單詞中的下一個單詞。

[Paragraph 7]
Yet it is hard, for several reasons, to fathom what LLMs “think”.
然而,由于一些原因,我們很難理解大型語言模型的 "想法"。

Details of the programming and training data of commercial ones like ChatGPT are proprietary.
ChatGPT等商業(yè)軟件的編程和訓(xùn)練數(shù)據(jù)的細(xì)節(jié)是有私有的。

And not even the programmers know exactly what is going on inside.
甚至連程序員都不知道里面到底發(fā)生了什么。

[Paragraph 8]
Linguists have, however, found clever ways to test LLMs’ underlying knowledge, in effect tricking them with probing tests.
然而,語言學(xué)家找到了測試大型語言模型基礎(chǔ)知識的巧妙方法,實(shí)際上是用探測性測試來誤導(dǎo)它們。

And indeed, LLMs seem to learn nested, hierarchical grammatical structures, even though they are exposed to only linear input, ie, strings of text.
事實(shí)上,大型語言模型似乎學(xué)習(xí)了嵌套的、層次化的語法結(jié)構(gòu),盡管它們只接觸到線性輸入,即文本字符串。

They can handle novel words and grasp parts of speech.
它們可以處理新詞并掌握詞性。

Tell ChatGPT that “dax” is a verb meaning to eat a slice of pizza by folding it, and the system deploys it easily: “After a long day at work, I like to relax and dax on a slice of pizza while watching my favourite TV show.” (The imitative element can be seen in “dax on”, which ChatGPT probably patterned on the likes of “chew on” or “munch on”.)
例如告訴ChatGPT,"dax "是一個動詞,意思是折疊著吃一片比薩餅,系統(tǒng)就能輕松地處理它:"在漫長的一天工作之后,我喜歡去放松放松,一邊看著我最喜歡的電視節(jié)目,一邊吃著比薩餅。" (在 "dax on "中可以看到模仿的成分,ChatGPT可能是按照 "chew on "或 "munch on "詞組結(jié)構(gòu)。)

[Paragraph 9]
What about the “poverty of the stimulus”?
那么 "刺激的貧乏 "怎么解釋?

After all, GPT-3 (the LLM underlying ChatGPT until the recent release of GPT-4) is estimated to be trained on about 1,000 times the data a human ten-year-old is exposed to.
畢竟,GPT-3(這是ChatGPT的基礎(chǔ)大型語言模型,最近發(fā)布了GPT-4)所接受的訓(xùn)練數(shù)據(jù)大約是 10 歲兒童所接觸數(shù)據(jù)的 1,000 倍。

That leaves open the possibility that children have an inborn tendency to grammar, making them far more proficient than any LLM.
這就留下了一種可能性,即兒童天生就有語法功能使他們比任何大型語言模型都熟練得多。

In a forthcoming paper in Linguistic Inquiry, researchers claim to have trained an LLM on no more text than a human child is exposed to, finding that it can use even rare bits of grammar.
在《語言學(xué)探索》上即將發(fā)表的一篇論文中,研究人員聲稱他們訓(xùn)練的大型語言模型所用的文本不超過人類兒童接觸到的文本,發(fā)現(xiàn)它甚至可以使用罕見的語法。

But other researchers have tried to train an LLM on a database of only child-directed language (that is, of transcripts of carers speaking to children).
但是其他研究人員已嘗試用僅包含面向兒童的語言(也就是看護(hù)者與兒童對話的記錄)的數(shù)據(jù)庫訓(xùn)練大型語言模型。

Here LLMs fare far worse. Perhaps the brain really is built for language, as Professor Chomsky says.
這種情況下,大型語言模型的表現(xiàn)要差得多。正如喬姆斯基教授所說,也許大腦真的是為語言而生的。

[Paragraph 10]
It is difficult to judge. Both sides of the argument are marshalling LLMs to make their case.
這很難判斷。爭論雙方都在用大型語言模型來證明自己的觀點(diǎn)。

The eponymous founder of his school of linguistics has offered only a brusque riposte.
這一語言學(xué)派的同名創(chuàng)始人(喬姆斯基)只是簡單直接地反駁了一下。

For his theories to survive this challenge, his camp will have to put up a stronger defence.
為了使他的理論在這次挑戰(zhàn)中站住腳,他的陣營必須提出更有力的觀點(diǎn)來辯護(hù)。

(恭喜讀完,本篇英語詞匯量800左右)
原文出自:2023年4月29日《The Economist》Culture版塊。

精讀筆記來源于:自由英語之路

本文翻譯整理: Irene

本文編輯校對: Irene
僅供個人英語學(xué)習(xí)交流使用。


【補(bǔ)充資料】(來自于網(wǎng)絡(luò))
喬姆斯基(Noam Chomsky)是美國語言學(xué)家,轉(zhuǎn)換-生成語法的創(chuàng)始人。1928年12月7日出生于美國賓夕法尼亞州的費(fèi)城。他在多個領(lǐng)域提出了許多有影響力的觀點(diǎn),包括語言習(xí)得、政治理論和媒體分析等。但他之所以成為這極具影響力的學(xué)者,源于他偉大的學(xué)術(shù)貢獻(xiàn)--他為現(xiàn)代語言學(xué)奠定了基礎(chǔ),更被譽(yù)為現(xiàn)代語言學(xué)之父。他提出了“語言習(xí)得裝置”這一概念,認(rèn)為人類天生具有語言習(xí)得的能力,使得兒童能夠快速而輕松地習(xí)得語言。同時,他也提出了“普遍語法”這一理論,認(rèn)為所有語言都共享一些基本的語法規(guī)則,這些規(guī)則被編碼到人類的大腦中。


深藍(lán)時刻Deep Blue moment 是指1997年5月11日發(fā)生在國際象棋界的重要事件。當(dāng)時,IBM 的超級計算機(jī) Deep Blue 在一場歷時六局、進(jìn)行了數(shù)個小時的棋局中戰(zhàn)勝了當(dāng)時世界排名第一的國際象棋大師卡斯帕羅夫,成為了史上首臺戰(zhàn)勝人類國際象棋大師的計算機(jī)。這場比賽被稱為“深藍(lán)時刻”,標(biāo)志著計算機(jī)技術(shù)在人工智能領(lǐng)域取得了重大突破,并對人們重新定義了計算機(jī)和人類智慧之間的關(guān)系。人們也開始更加意識到人工智能技術(shù)所帶來的挑戰(zhàn)與風(fēng)險,包括如何保護(hù)數(shù)據(jù)隱私、如何避免算法歧視等問題。

刺激的貧乏“Poverty of the stimulus”是一個語言學(xué)術(shù)語,用來描述兒童在沒有足夠語言輸入的情況下如何學(xué)習(xí)語言。這個概念最初由語言學(xué)家諾姆·喬姆斯基提出。根據(jù)“刺激的貧乏”理論,人類語言能力的本質(zhì)來源于先天的語言學(xué)知識,即人類大腦天生具有一種稱為“語言獲取裝置”的機(jī)制,允許人們自然地掌握語言的結(jié)構(gòu)和規(guī)則。核心觀點(diǎn)是,在自然語言中,語法規(guī)則遠(yuǎn)比實(shí)際語言輸入要豐富得多。也就是說,兒童通過聽到有限的語言樣本來學(xué)習(xí)語言時,他們面臨的是“刺激的貧乏”,即缺乏足夠的語言輸入。盡管存在刺激貧乏的問題,但是兒童仍能夠輕松、自然地掌握其母語的語法規(guī)則,這表明了他們具有一種與生俱來的語言學(xué)習(xí)能力。


【重點(diǎn)句子】(3個)
Now, though, the astonishment of the Deep Blue moment is back, because computers are employing something that humans consider their defining ability: language.
不過現(xiàn)在,深藍(lán)時刻的震撼場面再次出現(xiàn)了,因為計算機(jī)正在運(yùn)用人類認(rèn)為是其決定性能力的東西:語言。

Grammar has a hierarchical, nested structure involving units within other units. Words form phrases, which form clauses, which form sentences and so on.
語法具有層次結(jié)構(gòu)、嵌套結(jié)構(gòu),涉及其他單元中的單元。單詞構(gòu)成短語,短語構(gòu)成從句,句子構(gòu)成句子等等。

That leaves open the possibility that children have an inborn tendency to grammar, making them far more proficient than any LLM.
這就留下了一種可能性,即兒童天生就有語法功能使他們比任何大型語言模型都熟練得多。

自由英語之路




《經(jīng)濟(jì)學(xué)人》雙語:ChatGPT用詞方式引發(fā)了語言學(xué)界的激烈爭論的評論 (共 條)

分享到微博請遵守國家法律
安西县| 芦山县| 巢湖市| 小金县| 黄大仙区| 靖西县| 新绛县| 深泽县| 磐石市| 龙南县| 三原县| 白沙| 彝良县| 永嘉县| 泸溪县| 黄浦区| 河源市| 济源市| 城口县| 新乡市| 会泽县| 离岛区| 凤凰县| 乐至县| 班玛县| 玉龙| 涪陵区| 阿图什市| 察哈| 正阳县| 九江市| 保定市| 伽师县| 邹平县| 金坛市| 静海县| 马关县| 香格里拉县| 曲阜市| 涞水县| 布拖县|