【菲赫金哥爾茨微積分學教程精讀筆記Ep96】函數(shù)極限例題(六)
這幾次都是書上的例題,這次的題目對之前數(shù)列極限一個結(jié)論的推廣,結(jié)論要記住,以后會反復用到——
54例題
h.一個重要極限:lim (1+1/x)^x=e,x趨向于+∞時,lim?(1+1/x)^x=e,x趨向于-∞時
lim?(1+1/x)^x=e,x趨向于+∞時



已知數(shù)列極限lim(1+1/n)^n=e;
那么,
lim(1+1/n)^(n+1)=lim(1+1/n)^n lim(1+1/n)=e*1=e,
lim[1+1/(n+1)]^n=lim[1+1/(n+1)]^(n+1)lim[1+1/(n+1)]^(-1)=e*1=e;
對于任意x>0,必然存在N',使得N'<=x<N'+1,則1+1/(N'+1)<1+1/x<=1+1/N';
由3:[1+1/(N'+1)]^N'<=(1+1/x)^x<=(1+1/N')^(N'+1);
令x趨向于+∞,則N'也趨向于無窮大,lim[1+1/(N'+1)]^N'=e,lim(1+1/N')^(N'+1)=e,由夾逼準則,lim(1+1/x)^x=e.
lim?(1+1/x)^x=e,x趨向于-∞時


x趨向于-∞,則-x趨向于+∞,令y=-x;
lim?(1+1/x)^x=lim(1-1/y)^(-y)=lim[(y-1)/y]^(-y)=lim[y/(y-1)]^y=lim[1+1/(y-1)]^y=lim[1+1/(y-1)]^(y-1)lim[1+1/(y-1)]=e*1=e.
證畢。
就到這里!
標簽: