邏輯語義篇Ⅱ-Propositional Logic(Semantics)
?
邏輯語義篇Ⅱ
?
Ⅱ「Semantic Relation between Sentences」
?
句子之間也存在某種關(guān)系,即<semantic relation>, 區(qū)別于<sense relation between words>, with some terms of truth conditions.
?
(a). <Synonymy>
X is synonymous with Y.
E.g. He was a bachelor all his live=He never married all his life.
The boy loves the pretty girl that is worthwhile=The pretty girl deserves the boy’s love.
?
If X is true, Y is true. And if X is false, Y is false.
?
?
(b). <Inconsistency不一致>
X is inconsistent with Y.
E.g. X: John is a bachelor. Y: John is married.
?
If X is true, Y is false. And if X is false, Y is true.
?
?
旗下有概念<Contradiction矛盾>
單句示例——X is a contradiction.
When X is a contradiction, it is invariably false.
E.g. My unmarried sister is married to a bachelor.
?
多句示例——A: Mary’s mother-in-law is a doctor.
B: Mary is still single.
?
<不一致><矛盾>兩者的區(qū)別,不考。但如果真區(qū)別的話,<Inconsistency>&泛概念;而<Contradiction>&二元對立≈<Complementary Antonyms>.
?
看懂直接過!
?
?
(c). <Entailment>
X entails Y. (Y is an entailment of X.)
即,X是Y的充分條件,Y是X的必要條件。
E.g. X: he has been to France. Y: he has been to Europen.
X: John married a black heiress. Y: John married a black girl.
If X is true, Y is necessarily true. And if X is false, Y may be true or false.
?
?
也可以說成X presupposes Y. (Y is a prerequisite of X.)
X: John’s bike needs repairing.
Y: John has a bike.
If X is true, Y must be true. And if X is false, Y is still true.
?
與<Entailment>相似,唯一的區(qū)別即Y是否絕對是真!
?
?
兩者的區(qū)別來說,<Entailment>&<Hyponyms>及同義替換, 而<Presuppose>更偏于“有Y才能A”。
?
[雜談]——邏輯BUG, 如果John’s bike needs repairing為否,那應(yīng)該是“車不需要修”甚至可以激進理解為"X is a contradiction”, 他就沒有車。
?
那就加補丁唄,[星火]默認(rèn)“車不需要修”預(yù)設(shè)了“約翰有車”!
?
?
(d). <Semantic Anomaly>
It means that a sentence is absurd. 即X is semantically anomalous.
E.g. the table has bad intentions.
He is drinking a knife.
?
不符合典型的,全部丟進d組就行!
?
?
?
?
?
上述為「Propositional Logic命題邏輯」
【名詞解釋】——<Propositional Logic>, also known as propositional calculus or sentential calculus, is the study of the truth conditions for propositions: how the truth of a composite proposition is determined by the truth value of its constituent propositions and the connections between them.
?
屬于「Logical Semantics」
?
?
?
下面,[胡]大師傾情講解下命題邏輯學(xué)的術(shù)語,
?
字母P代表一個簡單命題
符號~或?兩者無差別表示<Negation否定> (插個眼,這里可見符號表達(dá)有不唯一性)
∴If a proposition P is true, then its negation ~P is false. And vice versa.
?
符號&或∧為<交集>, 英語語言學(xué)稱其為<Connective Conjunction>.
符號V為<并集>, 英語語言學(xué)稱其為<Connective Disjunction>.
(情況就是這么一個情況,對接高一數(shù)學(xué)∩∧∪V,原理是一樣的!)
?
Entailment用符號→表示
the connective implication≈conditional conjunction, ≈corresponds to “if…then…”
?
<等值等價>用≡或?表示
單身≡沒結(jié)婚
father?dad
公的?雄性
1+1≡2
?
某種角度來說,the connective equivalence also called biconditional conjunction.
p≡q意味著p→q, q→p.
It corresponds to the English expression “if and only if…then…”, 又可寫成“iff…then…”
?
?
表格自己看,

?
?
[補丁]——否定,按理來說可以否任何一個成分,但如果有多個可否定的點,僅限于對錯區(qū)別,本質(zhì)上僅限于二元對立化的處理。這樣才能守住<p與~p必對一個>的邏輯大廈!
p: John isn’t old.
∴~p: John is old. 而不能說John is young.
?
由此,結(jié)合<互補反義詞><等級反義詞>再具體問題具體分析!自己推導(dǎo)!
?
[胡-第五版]p103倒數(shù)第2段,他表述錯了。因為服從數(shù)學(xué)邏輯來說,如果p是真,則?p一定是假;p是假,?p一定是真。
?
?
然后,一些降智的命題見其弊端,
If snow is black, grass is green.
All men are rational, and Socrates is a man.→Therefore, Socrates is rational.
邏輯性不強,不嚴(yán)謹(jǐn),推理沒有效,置信度低。
?
徒有邏輯符號的外殼作為工具,內(nèi)在的操作空間太大了!
?
那如何破局呢?下期見!
?