最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

邏輯語義篇Ⅱ-Propositional Logic(Semantics)

2023-08-21 23:23 作者:馮明楊  | 我要投稿

?

邏輯語義篇Ⅱ

?

Ⅱ「Semantic Relation between Sentences」

?

句子之間也存在某種關(guān)系,即<semantic relation>, 區(qū)別于<sense relation between words>, with some terms of truth conditions.

?

(a). <Synonymy>

X is synonymous with Y.

E.g. He was a bachelor all his live=He never married all his life.

The boy loves the pretty girl that is worthwhile=The pretty girl deserves the boy’s love.

?

If X is true, Y is true. And if X is false, Y is false.

?

?

(b). <Inconsistency不一致>

X is inconsistent with Y.

E.g. X: John is a bachelor. Y: John is married.

?

If X is true, Y is false. And if X is false, Y is true.

?

?

旗下有概念<Contradiction矛盾>

單句示例——X is a contradiction.

When X is a contradiction, it is invariably false.

E.g. My unmarried sister is married to a bachelor.

?

多句示例——A: Mary’s mother-in-law is a doctor.

B: Mary is still single.

?

<不一致><矛盾>兩者的區(qū)別,不考。但如果真區(qū)別的話,<Inconsistency>&泛概念;而<Contradiction>&二元對立≈<Complementary Antonyms>.

?

看懂直接過!

?

?

(c). <Entailment>

X entails Y. (Y is an entailment of X.)

即,X是Y的充分條件,Y是X的必要條件。

E.g. X: he has been to France. Y: he has been to Europen.

X: John married a black heiress. Y: John married a black girl.

If X is true, Y is necessarily true. And if X is false, Y may be true or false.

?

?

也可以說成X presupposes Y. (Y is a prerequisite of X.)

X: John’s bike needs repairing.

Y: John has a bike.

If X is true, Y must be true. And if X is false, Y is still true.

?

與<Entailment>相似,唯一的區(qū)別即Y是否絕對是真!

?

?

兩者的區(qū)別來說,<Entailment>&<Hyponyms>及同義替換, 而<Presuppose>更偏于“有Y才能A”。

?

[雜談]——邏輯BUG, 如果John’s bike needs repairing為否,那應(yīng)該是“車不需要修”甚至可以激進理解為"X is a contradiction”, 他就沒有車。

?

那就加補丁唄,[星火]默認(rèn)“車不需要修”預(yù)設(shè)了“約翰有車”!

?

?

(d). <Semantic Anomaly>

It means that a sentence is absurd. 即X is semantically anomalous.

E.g. the table has bad intentions.

He is drinking a knife.

?

不符合典型的,全部丟進d組就行!

?

?

?

?

?

上述為「Propositional Logic命題邏輯」

【名詞解釋】——<Propositional Logic>, also known as propositional calculus or sentential calculus, is the study of the truth conditions for propositions: how the truth of a composite proposition is determined by the truth value of its constituent propositions and the connections between them.

?

屬于「Logical Semantics」

?

?

?

下面,[胡]大師傾情講解下命題邏輯學(xué)的術(shù)語,

?

字母P代表一個簡單命題

符號~或?兩者無差別表示<Negation否定> (插個眼,這里可見符號表達(dá)有不唯一性)

∴If a proposition P is true, then its negation ~P is false. And vice versa.

?

符號&或∧為<交集>, 英語語言學(xué)稱其為<Connective Conjunction>.

符號V為<并集>, 英語語言學(xué)稱其為<Connective Disjunction>.

(情況就是這么一個情況,對接高一數(shù)學(xué)∩∧∪V,原理是一樣的!)

?

Entailment用符號→表示

the connective implication≈conditional conjunction, ≈corresponds to “if…then…”

?

<等值等價>用≡或?表示

單身≡沒結(jié)婚

father?dad

公的?雄性

1+1≡2

?

某種角度來說,the connective equivalence also called biconditional conjunction.

p≡q意味著p→q, q→p.

It corresponds to the English expression “if and only if…then…”, 又可寫成“iff…then…”

?

?

表格自己看,


?

?

[補丁]——否定,按理來說可以否任何一個成分,但如果有多個可否定的點,僅限于對錯區(qū)別,本質(zhì)上僅限于二元對立化的處理。這樣才能守住<p與~p必對一個>的邏輯大廈!

p: John isn’t old.

∴~p: John is old. 而不能說John is young.

?

由此,結(jié)合<互補反義詞><等級反義詞>再具體問題具體分析!自己推導(dǎo)!

?

[胡-第五版]p103倒數(shù)第2段,他表述錯了。因為服從數(shù)學(xué)邏輯來說,如果p是真,則?p一定是假;p是假,?p一定是真。

?

?

然后,一些降智的命題見其弊端,

If snow is black, grass is green.

All men are rational, and Socrates is a man.→Therefore, Socrates is rational.

邏輯性不強,不嚴(yán)謹(jǐn),推理沒有效,置信度低。

?

徒有邏輯符號的外殼作為工具,內(nèi)在的操作空間太大了!

?

那如何破局呢?下期見!

?


邏輯語義篇Ⅱ-Propositional Logic(Semantics)的評論 (共 條)

分享到微博請遵守國家法律
南昌县| 汕头市| 铁岭市| 泌阳县| 乾安县| 江孜县| 巩义市| 嘉善县| 承德县| 承德市| 资中县| 安吉县| 高要市| 邯郸市| 双桥区| 辽宁省| 海安县| 上杭县| 兴业县| 滨海县| 会同县| 平潭县| 龙陵县| 盐亭县| 年辖:市辖区| 绍兴市| 噶尔县| 岳池县| 宁津县| 河西区| 凤台县| 鸡东县| 无极县| 宿州市| 达拉特旗| 新田县| 汉源县| 昌乐县| 张家界市| 确山县| 新丰县|