最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

幾類特殊遞推數(shù)列的矩陣算法(前篇)

2023-08-08 11:49 作者:現(xiàn)代微積分  | 我要投稿

前言

擱置了許久,終于回來更新以兌現(xiàn)前周立下的flag了。

在學(xué)習(xí)數(shù)列時,我們會遇到a_%7Bn%2B2%7D-5a_%7Bn%2B1%7D%2B6a_n%3D0這種遞推式,其中一種算法是用特征根,而特征根之前做過一期專欄寫了個人的奇妙理解方法,感興趣的可以參考:

深探特征根的奧妙

而這期專欄,我們可以換種視角,從線性代數(shù)的角度來解決。

另外,在做一些數(shù)列的題中難免會遇到像a_%7Bn%2B2%7D%3Da_%7Bn%2B1%7D-a_%7Bn%7D%5CRightarrow%20T%3D6,a_%7Bn%2B1%7D%3D%5Cfrac%7B1%2Ba_n%7D%7B1-a_n%7D%5CRightarrow%20T%3D4%20這種惡心的數(shù)列。答案是通過"暴力"反復(fù)迭代得出的周期,不禁讓人摸不著頭腦!

"這誰能想到???"[惱]

那么命題人的心機(jī)何在呢?今兒就來一探究竟~

另外,此篇專欄會涉及到不少矩陣運(yùn)算的知識,萌新可以先參考3b1b的視頻講解:

【官方雙語/合集】線性代數(shù)的本質(zhì) - 系列合集

此篇文章不針對應(yīng)試,而是給數(shù)學(xué)愛好者們拓展下思路


整式的線性遞推

先來講講其概念,所謂線性遞推,也即a_%7Bn%2Bk%7D%20%3D%5Ctext%7B~%7Da_%7Bn%2Bk-1%7D%2B%5Ctext%7B~%7Da_%7Bn%2Bk-2%7D%2B...%2B%5Ctext%7B~%7Da_n(~表系數(shù))形式,這里的

a_%7Bn%2Bk%7D%2Ca_%7Bn%2Bk-1%7D%2Ca_%7Bn%2Bk-2%7D%2C...%2Ca_n次數(shù)均為1


比如a_%7Bn%2B2%7D%3D3a_%7Bn%2B1%7D%2B4a_n為線性遞推,而像a_%7Bn%2B2%7D%3D3%7B%5Ccolor%7BRed%7D%20%7Ba%5E2_%7Bn%2B1%7D%7D%7D%20%2B4a_n%2Ca_%7Bn%2B2%7D%3D3a_%7Bn%2B1%7D%2B4%7B%5Ccolor%7BRed%7D%20%7Ba_n%5E3%7D%7D%20這種有次數(shù)不為1的就不是線性遞推了


再來引入矩陣表示式以便良好地銜接

對于線性方程組,如:%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0Ax_2%3D3x_1%2B2y_1%5C%5C%0Ay_2%3D-x_1%2B4y_1%0A%5Cend%7Bmatrix%7D%5Cright.

我們想更直觀地表示(x_2%2Cy_2)(x_1%2Cy_1)的映射關(guān)系,可將其化為矩陣形式:

%5Cbegin%7Bbmatrix%7D%0Ax_2%20%5C%5C%0Ay_2%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0A%203%20%262%20%5C%5C%0A-1%20%20%264%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Ax_1%20%5C%5C%0Ay_1%0A%5Cend%7Bbmatrix%7D

幾何意義上,即向量%5Cbegin%7Bbmatrix%7D%0Ax_2%20%5C%5C%0Ay_2%0A%5Cend%7Bbmatrix%7D由向量%5Cbegin%7Bbmatrix%7D%0Ax_1%20%5C%5C%0Ay_1%0A%5Cend%7Bbmatrix%7D作線性變換%5Cbegin%7Bbmatrix%7D%0A%203%20%262%20%5C%5C%0A-1%20%20%264%0A%5Cend%7Bbmatrix%7D得到,其中矩陣%5Cbegin%7Bbmatrix%7D%0A%203%20%262%20%5C%5C%0A-1%20%20%264%0A%5Cend%7Bbmatrix%7D就類似于函數(shù)(function),只不過函數(shù)f(x)的功能是將一個x映射為一個y,而矩陣的功能則是將一個向量映射為另一個向量。由于向量起點(diǎn)均默認(rèn)于原點(diǎn),故也可視為將一個坐標(biāo)(向量終點(diǎn))映射為另一個坐標(biāo)


先來看一道例題:已知a_1%3D1%2Ca_2%3D1%2Ca_%7Bn%2B2%7D%3D5a_%7Bn%2B1%7D-6a_n,求通項(xiàng)公式?

由于筆者能力暫有限,想不到更好地銜接鋪墊了,所以提前劇透(

有了上述的鋪墊,如果我們能將遞推式化為%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B2%7D%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0AA%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D該多好!

為什么好呢?因?yàn)檫@樣就有:%5Cbegin%7Bbmatrix%7D%0Aa_%7B3%7D%5C%5C%0Aa_%7B2%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0AA%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7B2%7D%5C%5C%0Aa_%7B1%7D%0A%5Cend%7Bbmatrix%7D,%5Cbegin%7Bbmatrix%7D%0Aa_%7B4%7D%5C%5C%0Aa_%7B3%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0AA%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7B3%7D%5C%5C%0Aa_%7B2%7D%0A%5Cend%7Bbmatrix%7D

我們便驚奇地發(fā)現(xiàn),這運(yùn)算不就和等比數(shù)列很相近么?

于是得到%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B2%7D%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0AA%5E%7Bn%7D%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7B2%7D%5C%5C%0Aa_%7B1%7D%0A%5Cend%7Bbmatrix%7D

因此,要求a_%7Bn%2B1%7D,只需對初值構(gòu)成的向量%5Cbegin%7Bbmatrix%7D%0Aa_%7B2%7D%5C%5C%0Aa_%7B1%7D%0A%5Cend%7Bbmatrix%7D作n次矩陣A的變換即可

而我們要求a_%7Bn%7D,那么就需作n-1次矩陣A的變換

回到題目,先選取已知遞推式,再選取另一條式子a_%7Bn%2B1%7D%3D1a_%7Bn%2B1%7D%2B0a_n

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0Aa_%7Bn%2B2%7D%3D5a_%7Bn%2B1%7D-6a_n%20%5C%5C%0Aa_%7Bn%2B1%7D%3D1a_%7Bn%2B1%7D%2B0%20a_n%0A%5Cend%7Bmatrix%7D%5Cright.

寫成矩陣形式,即:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%5Cbegin%7Bbmatrix%7D%0A%205%20%26%20-6%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D

于是可形成遞推:

%5Cbegin%7Balign%7D%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%26%3D%5Cbegin%7Bbmatrix%7D%0A%205%20%26%20-6%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D%5C%5C%0A%26%3D%5Cbegin%7Bbmatrix%7D%0A%205%20%26%20-6%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%5E2%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%7D%20%5C%5C%0Aa_%7Bn-1%7D%0A%5Cend%7Bbmatrix%7D%5C%5C%0A%26%3D%5Cbegin%7Bbmatrix%7D%0A%205%20%26%20-6%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%5E3%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn-1%7D%20%5C%5C%0Aa_%7Bn-2%7D%0A%5Cend%7Bbmatrix%7D%5C%5C%0A%26%3D%5Ccdots%20%5C%5C%0A%26%3D%5Cbegin%7Bbmatrix%7D%0A%205%20%26%20-6%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%5E%7Bn%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7B2%7D%20%5C%5C%0Aa_%7B1%7D%0A%5Cend%7Bbmatrix%7D%0A%5Cend%7Balign%7D


%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%5Cbegin%7Bbmatrix%7D%0A%205%20%26%20-6%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%5E%7Bn-1%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0A1%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D

下面計算%5Cbegin%7Bbmatrix%7D%0A%205%20%26%20-6%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%5E%7Bn-1%7D

對角化后,得:

%5Cbegin%7Bbmatrix%7D%0A%205%20%26%206%5C%5C%0A1%20%20%260%0A%5Cend%7Bbmatrix%7D%5E%7Bn-1%7D%3D%0A%5Cbegin%7Bbmatrix%7D%0A2%20%20%263%20%5C%5C%0A%201%20%261%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0A%202%20%26%200%5C%5C%0A%200%20%263%0A%5Cend%7Bbmatrix%7D%5E%7Bn-1%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0A-1%20%20%26%203%5C%5C%0A%201%20%26-2%0A%5Cend%7Bbmatrix%7D

代入化簡得:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_n%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0A2%5E%7Bn%2B1%7D-3%5En%20%5C%5C%0A2%5En-3%5E%7Bn-1%7D%0A%5Cend%7Bbmatrix%7D

即得:%5Cboxed%7Ba_n%3D2%5En-3%5E%7Bn-1%7D%7D

如果是3階遞推又怎樣呢?

比如a_%7Bn%2B3%7D%3D2a_%7Bn%2B1%7D-3a_%7Bn%2B1%7D%2B5a_n

方法是一樣的,則考慮構(gòu)建3階矩陣:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B3%7D%20%5C%5C%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3DA%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D

則還需選?。?/p>

a_%7Bn%2B2%7D%3D1a_%7Bn%2B2%7D%2B0a_%7Bn%2B1%7D%2B0a_n

a_%7Bn%2B1%7D%3D0a_%7Bn%2B2%7D%2B1a_%7Bn%2B1%7D%2B0a_n

由①②③,寫成矩陣形式,即:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B3%7D%20%5C%5C%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%5Cbegin%7Bbmatrix%7D%0A%202%20%26%20-3%20%26%205%5C%5C%0A1%20%20%26%200%20%260%20%5C%5C%0A0%20%20%26%201%20%260%0A%5Cend%7Bbmatrix%7D%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D

遞推即得:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%5Cbegin%7Bbmatrix%7D%0A%202%20%26%20-3%20%26%205%5C%5C%0A1%20%20%26%200%20%260%20%5C%5C%0A0%20%20%26%201%20%260%0A%5Cend%7Bbmatrix%7D%5E%7Bn-1%7D%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7B3%7D%20%5C%5C%0Aa_%7B2%7D%20%5C%5C%0Aa_%7B1%7D%0A%5Cend%7Bbmatrix%7D

后面就也是對角化處理了

不過求特征值時,特征多項(xiàng)式的次數(shù)跟矩陣的階數(shù)是對應(yīng)的,因此上述矩陣特征多項(xiàng)式就是3次方程。而上面的系數(shù)是隨便選取,因此解析解理論可求,只是可能不平凡。這也是出題時最多只出到二階線性遞推的主要原因。

推廣到任意階線性遞推

a_%7Bn%2Bk%7D%20%3DC_1a_%7Bn%2Bk-1%7D%2BC_2a_%7Bn%2Bk-2%7D%2B...%2BC_ka_n

其中C_1%2CC_2%2C...%2CC_k表系數(shù)

考慮構(gòu)建n階矩陣:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2Bk%7D%20%5C%5C%0Aa_%7Bn%2Bk-1%7D%20%5C%5C%0A...%20%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0AA%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2Bk-1%7D%20%5C%5C%0Aa_%7Bn%2Bk-2%7D%20%5C%5C%0A...%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D

則還需選取:

%5Cbegin%7Balign%7D%0A%26a_%7Bn%2Bk-1%7D%3D0a_%7Bn%2Bk%7D%2B1a_%7Bn%2Bk-1%7D%2B...%2B0a_n%5C%5C%0A%26a_%7Bn%2Bk-2%7D%3D0a_%7Bn%2Bk%7D%2B0a_%7Bn%2Bk-1%7D%2B1a_%7Bn%2Bk-2%7D%2B...%2B0a_n%5C%5C%0A%26...%5C%5C%0A%26a_%7Bn%2B1%7D%3D0a_%7Bn%2Bk%7D%2Ba_%7Bn%2Bk-1%7D%2B...%2B1a_%7Bn%2B1%7D%2B0a_n%0A%5Cend%7Balign%7D

寫成矩陣形式,即:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2Bk%7D%20%5C%5C%0Aa_%7Bn%2Bk-1%7D%20%5C%5C%0A...%20%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0A%20C_1%20%26C_2%20%20%26%20...%20%26C_k%20%5C%5C%0A1%20%20%26%200%20%26%20..%20%26%200%5C%5C%0A%20...%20%26%20...%20%26%20...%20%26%200%5C%5C%0A%200%20%26%20...%20%26%201%20%260%0A%5Cend%7Bbmatrix%7D%0A%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2Bk-1%7D%20%5C%5C%0Aa_%7Bn%2Bk-2%7D%20%5C%5C%0A...%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D

觀察系數(shù)矩陣可知,其有如下特點(diǎn):

第一行的數(shù)字即遞推式中對應(yīng)的由a_%7Bn%2Bk-1%7Da_%7Bn%7D的系數(shù)

從第二行開始,從左往右依次寫1,其余寫0。也即從第1列第2行起,沿"左上--右下"走向處數(shù)字為1,其余為0

舉個例子當(dāng)練習(xí)

a_%7Bn%2B4%7D%3D3a_%7Bn%2B3%7D%2B2a_%7Bn%2B2%7D-5a_%7Bn%2B1%7D-2a_n

對應(yīng)矩陣形式遞推,即:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B4%7D%20%5C%5C%0Aa_%7Bn%2B3%7D%20%5C%5C%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0A%203%20%26%202%20%26%20-5%20%26%20-2%5C%5C%0A%7B%5Ccolor%7BBlue%7D%20%7B1%7D%7D%20%20%20%260%20%20%26%200%20%260%20%5C%5C%0A%200%20%26%20%7B%5Ccolor%7BBlue%7D%20%7B1%7D%7D%20%26%200%20%26%200%5C%5C%0A0%20%20%26%20%200%26%20%7B%5Ccolor%7BBlue%7D%20%7B1%7D%7D%20%260%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B3%7D%20%5C%5C%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D



有了以上背景,我們便可以從更高觀點(diǎn)來證明a_%7Bn%2B2%7D%3Da_%7Bn%2B1%7D-a_%7Bn%7D%5CRightarrow%20T%3D6這個奇葩式子了

對應(yīng)矩陣形式遞推,即:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B2%7D%20%5C%5C%0Aa_%7Bn%2B1%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0A%201%20%26%20-1%5C%5C%0A%201%20%260%0A%5Cend%7Bbmatrix%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D

遞推得:

%5Cbegin%7Bbmatrix%7D%0Aa_%7Bn%2B1%7D%20%5C%5C%0Aa_%7Bn%7D%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0A%201%20%26%20-1%5C%5C%0A%201%20%260%0A%5Cend%7Bbmatrix%7D%5E%7Bn-1%7D%0A%5Ccdot%20%0A%5Cbegin%7Bbmatrix%7D%0Aa_%7B2%7D%20%5C%5C%0Aa_%7B1%7D%0A%5Cend%7Bbmatrix%7D

下面求解%0A%5Cbegin%7Bbmatrix%7D%0A%201%20%26%20-1%5C%5C%0A%201%20%260%0A%5Cend%7Bbmatrix%7D%5E%7Bn-1%7D

求得矩陣特征根為一對共軛復(fù)數(shù):

%5Clambda%20_%7B1%2C2%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cpm%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%20i

ps:特征值為復(fù)數(shù)則對應(yīng)伸縮+旋轉(zhuǎn)(模長對應(yīng)伸縮,輻角對應(yīng)旋轉(zhuǎn))矩陣運(yùn)算在復(fù)數(shù)域成立已有嚴(yán)格證明,這里就先不作拓展了

那么對角化后,則有:

%5Cbegin%7Bbmatrix%7D%0A%201%20%26%20-1%5C%5C%0A%201%20%260%0A%5Cend%7Bbmatrix%7D%0A%3DS%5Ccdot%20J%5Ccdot%20S%5E%7B-1%7D

其中J%3D%5Cbegin%7Bbmatrix%7D%0A%20%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%20i%20%26%200%5C%5C%0A0%20%20%26%20%20%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%20i%0A%5Cend%7Bbmatrix%7D%0A%3D%5Cbegin%7Bbmatrix%7D%0Ae%5E%7B%5Cfrac%7B%5Cpi%20%7D%7B3%7Di%20%7D%20%20%26%200%5C%5C%0A0%20%20%26e%5E%7B-%5Cfrac%7B%5Cpi%20%7D%7B3%7Di%20%7D%0A%5Cend%7Bbmatrix%7D

于是有J%5E6%0A%3D%5Cbegin%7Bbmatrix%7D%0A(e%5E%7B%5Cfrac%7B%5Cpi%20%7D%7B3%7Di%20%7D)%5E6%20%20%26%200%5C%5C%0A0%20%20%26(e%5E%7B-%5Cfrac%7B%5Cpi%20%7D%7B3%7Di%20%7D)%5E6%0A%5Cend%7Bbmatrix%7D%0A%3D%5Cbegin%7Bbmatrix%7D%0A%201%20%26%200%5C%5C%0A0%20%20%261%0A%5Cend%7Bbmatrix%7D

說明對向量%5Cbegin%7Bbmatrix%7D%0Aa_%7B2%7D%20%5C%5C%0Aa_%7B1%7D%0A%5Cend%7Bbmatrix%7D作6次J的變換后回到原位,因此周期為6

到此悟性好的讀者腦海中已經(jīng)掀起了滔天巨浪!

這正是特殊的輻角具有旋轉(zhuǎn)周期性造成的!??!

原來這令人頭大的結(jié)論背后有如此絕妙的背景!

這便是數(shù)學(xué)!純真美妙的數(shù)學(xué)!不被應(yīng)試名利銅臭玷污的數(shù)學(xué)!

總結(jié)

這期專欄主要講解了用矩陣方法求解整式線性遞推數(shù)列,順帶發(fā)掘了一些奇葩結(jié)論背后美妙的命題背景。

其中矩陣次方的處理采用了矩陣對角化的方法。而這種方法對于二階矩陣而言需要滿足特征根為2不等實(shí)根或一對共軛復(fù)根時使用。換而言之,還存在特征根為重根的情況,這種情況矩陣不可對角化。由于個人尚未了解充分,因此先把尚未解決的這種特殊情況先遺留與此。后續(xù)掌握后再補(bǔ)充討論。

整式線性遞推寫完也花了不少篇幅了,因此一階分式線性遞推就放后續(xù)再講了~

另外,感覺缺少例題的講解,有空翻翻好像還沒丟的一輪書找找例題附上[滑稽]


幾類特殊遞推數(shù)列的矩陣算法(前篇)的評論 (共 條)

分享到微博請遵守國家法律
宁国市| 花莲县| 栾城县| 罗平县| 长海县| 吴川市| 曲沃县| 牡丹江市| 建水县| 新密市| 洞头县| 建平县| 黄浦区| 察隅县| 庆安县| 岗巴县| 柳河县| 万全县| 台南市| 凤台县| 湟中县| 平邑县| 朝阳区| 青神县| 彭阳县| 澜沧| 辽宁省| 炉霍县| 台南市| 水富县| 环江| 黑水县| 扶风县| 灵宝市| 阜平县| 平利县| 库车县| 沙雅县| 上栗县| 卢湾区| 茶陵县|