最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

學(xué)不明白的數(shù)學(xué)分析(五十九)

2023-02-24 19:20 作者:不能吃的大魚(yú)  | 我要投稿

好耶!含參變量反常積分的基本內(nèi)容都已經(jīng)介紹完啦!

從上一篇的內(nèi)容來(lái)看,其實(shí)正如我所說(shuō),函數(shù)項(xiàng)級(jí)數(shù)與含參變量積分(尤其是反常積分)之間有著十分緊密的聯(lián)系,所以理解起來(lái)并不困難。

而與函數(shù)項(xiàng)級(jí)數(shù)一樣,在介紹完含參變量反常積分的基本內(nèi)容之后,我們就要著重來(lái)對(duì)其應(yīng)用做一些簡(jiǎn)單的介紹。在函數(shù)項(xiàng)級(jí)數(shù)部分,我們最后是介紹了比較重要的一類(lèi)級(jí)數(shù)——冪級(jí)數(shù)。而在含參變量反常積分部分,我們則要著重介紹兩類(lèi)特殊積分——Euler第一型積分(Β函數(shù))和Euler第二型積分(Γ函數(shù))。


Chapter? Eighteen? 含參變量積分

18.4??Γ函數(shù)和Β函數(shù)

這兩類(lèi)函數(shù)的提出,并非突發(fā)奇想,而是在一定的數(shù)學(xué)問(wèn)題之上引申而得來(lái)的。(比如非正整數(shù)的階乘問(wèn)題)具體的歷史細(xì)節(jié)目前我沒(méi)有找到太多比較詳盡的內(nèi)容,不過(guò)對(duì)此有興趣的小伙伴倒是可以去閱讀一些數(shù)學(xué)史相關(guān)的著作,了解其中的數(shù)學(xué)故事,便于理解這一部分內(nèi)容。

我們先來(lái)討論Euler第二型積分,它的表達(dá)式如下:

%5CGamma%20(s)%3D%5Cint_0%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bs-1%7De%5E%7B-t%7D%20%5Ctext%20dt

這是一個(gè)含參變量反常積分,那么我們首先就要問(wèn),它是否收斂,或者是一致收斂的?

考慮到被積函數(shù)的形式,我們將其分割成:

%5Cint_0%5E%7B1%7D%20t%5E%7Bs-1%7De%5E%7B-t%7D%20%5Ctext%20dt%EF%BC%8C%5Cint_1%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bs-1%7De%5E%7B-t%7D%20%5Ctext%20dt

這兩個(gè)積分來(lái)討論。

首先,如果s的范圍是一不含0的正有限閉區(qū)間%5Ba%2Cb%5D,則這兩個(gè)積分一個(gè)是含參變量常義積分,一個(gè)是含參變量無(wú)窮積分,都是我們直接討論過(guò)的內(nèi)容,因此比較好判斷。

我們能夠想到:

0%5Cle%20t%5E%7Bb-1%7D%5Cle%20t%5E%7Bs-1%7D%20%5Cle%20t%5E%7Ba-1%7D%5Cquad%20(0%5Cle%20t%5Cle%201)

t%5E%7Bs-1%7D%5Cle%20t%5E%7Bb-1%7D%20%5Cquad(t%5Cge%201)

因此,我們能夠知道:

%5Cint_0%5E%7B1%7D%20t%5E%7Bs-1%7De%5E%7B-t%7D%20%5Ctext%20dt%20%5Cle%20%5Cint_0%5E%7B1%7D%20t%5E%7Ba-1%7De%5E%7B-t%7D%20%5Ctext%20dt

%5Cint_1%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bs-1%7De%5E%7B-t%7D%20%5Ctext%20dt%5Cle%20%5Cint_1%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bb-1%7De%5E%7B-t%7D%20%5Ctext%20dt

于是,由Weierstrass控制判別法,%5CGamma%20(s)在任意不含0的正有限閉區(qū)間上一致收斂,即Euler第一型積分在上(0%2C%2B%E2%88%9E)內(nèi)閉一致收斂,從而我們能夠知道這一積分在(0%2C%2B%E2%88%9E)上連續(xù)。

當(dāng)s=0時(shí),有:

%5Cint_0%5E%7B1%7D%20t%5E%7B-1%7De%5E%7B-t%7D%20%5Ctext%20dt%3D%5Cint_1%5E%7B%2B%E2%88%9E%7D%20x%5E%7B-1%7De%5E%7B-%5Cfrac%7B1%7D%7Bx%7D%20%7D%20%5Ctext%20dx

由于:

%5Clim_%7Bx%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bx%5E%7B-1%7De%5E%7B-%5Cfrac%7B1%7D%7Bx%7D%7D%20%7D%7Bx%5E%7B-1%7D%7D%20%20%3D1%EF%BC%9E0

則由比較判別法,此時(shí)%5CGamma%20(s)發(fā)散;進(jìn)而仍由比較判別法,當(dāng)s<0時(shí),由于:

%5Cint_0%5E%7B1%7D%20t%5E%7Bs-1%7De%5E%7B-t%7D%20%5Ctext%20dt%20%5Cge%20%5Cint_0%5E%7B1%7D%20t%5E%7B-1%7De%5E%7B-t%7D%20%5Ctext%20dt%20

于是發(fā)散。

至此,我們知道,%5CGamma%20(s)(0%2C%2B%E2%88%9E)上內(nèi)閉一致收斂,從而連續(xù);在(-%E2%88%9E%2C0%5D上發(fā)散。

有了以上的結(jié)果,我們就能對(duì)%5CGamma%20(s)的分析性質(zhì)做以研究。比如說(shuō):

Euler第二型積分可微,且:

%5CGamma%20%5E%7B(n)%7D(s)%3D%5Cint_0%5E%7B%2B%E2%88%9E%7Dt%5E%7Bs-1%7De%5E%7B-t%7D(%5Cln%20t)%5En%20%5Ctext%20dt

證明可以采用數(shù)學(xué)歸納法的思想,只需要對(duì)第一階導(dǎo)數(shù)證明即可。

因?yàn)楸环e函數(shù)與其偏導(dǎo)數(shù)顯然都是連續(xù)函數(shù),因此根據(jù)上一篇專(zhuān)欄中介紹的內(nèi)容,只需要證明:

F(s)%3D%5Cint_0%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bs-1%7De%5E%7B-t%7D%5Cln%20t%5Ctext%20dt

一致收斂即可。思路與上面一致。

按道理,我們接下來(lái)應(yīng)該研究一下這一積分的可積性質(zhì),不過(guò)由于其實(shí)實(shí)際上使用的比較少,所以我們不予討論。

我們接下來(lái)嘗試,對(duì)于Euler第二型積分而言,還能得到什么樣的結(jié)論。

通過(guò)計(jì)算,我們得到:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Cint_0%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bs-1%7De%5E%7B-t%7D%20%5Ctext%20dt%26%3D-%5Cint_0%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bs-1%7D%5Ctext%20d(e%5E%7B-t%7D)%5C%5C%0A%26%3D-%5Cbigg(t%5E%7Bs-1%7De%5E%7B-t%7D%5Cbigg%7C_0%5E%7B%2B%E2%88%9E%7D-%5Cint_0%5E%7B%2B%E2%88%9E%7D%20e%5E%7B-t%7D%20%5Ctext%20d(t%5E%7Bs-1%7D)%5Cbigg)%5C%5C%0A%26%3D(s-1)%5Cint_0%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bs-2%7De%5E%7B-t%7D%20%5Ctext%20dt%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

即:%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

%5CGamma%20(s%2B1)%3Ds%5CGamma%20(s)

(這里第二步實(shí)際上需證明等號(hào)右側(cè)前一項(xiàng)一致收斂到0,但是因?yàn)檫^(guò)于簡(jiǎn)單,所以這里略去了。)

如果令s=n,為正整數(shù),不難發(fā)現(xiàn),這與階乘的公式高度一致。如果我們能證明:

%5CGamma%20(1)%3D1

那么,此時(shí)這就是階乘的表達(dá)式,從而我們可以說(shuō),%5CGamma%20(s)實(shí)際上是對(duì)于任意正實(shí)數(shù)的階乘公式。

直接計(jì)算,不難得到:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5CGamma%20(1)%3D%5Cint_0%5E%7B%2B%E2%88%9E%7D%20e%5E%7B-t%7D%5Ctext%20dt%3D(1-e%5E%7B-t%7D)%5Cbigg%7C_0%5E%7B%2B%E2%88%9E%7D%3D1%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

這證明我們的想法是正確的。

而關(guān)于這一積分,Bohr和Mollerup在1992年首先發(fā)現(xiàn),配合最后一個(gè)條件:

%5Cln%20%5CGamma%20(s)(0%2C%2B%E2%88%9E)上是一個(gè)凸函數(shù)。

(命題1)

可以將函數(shù)在(0%2C%2B%E2%88%9E)上唯一確定成Euler第二型積分。也就是說(shuō):

設(shè)函數(shù)f(0%2C%2B%E2%88%9E)上滿(mǎn)足:

(1)

%5Cforall%20x%EF%BC%9E0%EF%BC%8Cf(x)%EF%BC%9E0%EF%BC%8Cf(1)%3D1

(2)

%5Cforall%20x%EF%BC%9E0%EF%BC%8Cf(x%2B1)%3Dxf(x)

(3)

%5Cln%20f(x)(0%2C%2B%E2%88%9E)上是一個(gè)凸函數(shù)。

則有:

f(x)%5Cequiv%20%5CGamma%20(x)%3D%5Cint_0%5E%7B%2B%E2%88%9E%7D%20t%5E%7Bx-1%7De%5E%7B-t%7D%20%5Ctext%20dt

我們只要能夠證明,滿(mǎn)足著三個(gè)條件的函數(shù)是唯一的,因?yàn)槲覀円褜⒄业搅薊uler第二型積分作為滿(mǎn)足這三個(gè)條件的函數(shù),因此一定就有結(jié)論成立。

考慮條件(2),只要f(x)(0%2C1)上唯一確定,則函數(shù)就在(0%2C%2B%E2%88%9E)上唯一確定。而由條件(3),我們能夠得到:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Cfrac%7B%5Cln%20f(n)-%5Cln%20f(n-1)%7D%7Bn-(n-1)%7D%20%26%5Cle%20%5Cfrac%7B%5Cln%20f(n%2Bx)-%5Cln%20f(n)%7D%7B(n%2Bx)-n%7D%20%5C%5C%0A%26%5Cle%20%5Cfrac%7B%5Cln%20f(n%2B1)-%5Cln%20f(n)%7D%7B(n%2B1)-n%7D%5C%5C%20%0A%26%5Cle%20%5Cfrac%7B%5Cln%20f(n%2B1)-%5Cln%20f(n%2Bx)%7D%7B(n%2B1)-(n%2Bx)%7D%20%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

由條件(1)(2),顯然:

f(n)%3D(n-1)!

則:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%26x%5Cln%20(n-1)%5Cle%20%5Cln%20f(n%2Bx)-%5Cln%20(n-1)!%5Cle%20x%5Cln%20n%5C%5C%0A%5CLeftrightarrow%20%26x%5Cln%20(n-1)%2B%5Cln%20(n-1)!%5Cle%20%5Cln%20f(n%2Bx)%5Cle%20x%5Cln%20n%2B%5Cln%20(n-1)!%5C%5C%0A%5CLeftrightarrow%20%26(n-1)%5Ex(n-1)!%5Cle%20f(n%2Bx)%5Cle%20n%5Ex(n-1)!%5C%5C%0A%5CLeftrightarrow%20%26(n-1)%5Ex(n-1)!%5Cle%20f(x)%5Cprod_%7Bi%3D1%7D%5En%20(i-1%2Bx)%5Cle%20n%5Ex(n-1)!%5C%5C%0A%5CLeftrightarrow%20%26%5Cfrac%7B(n-1)%5Ex(n-1)!%7D%7B%5Cprod_%7Bi%3D1%7D%5En%20(i-1%2Bx)%7D%20%5Cle%20f(x)%5Cle%20%5Cfrac%7Bn%5Ex(n-1)!%7D%7B%5Cprod_%7Bi%3D1%7D%5En%20(i-1%2Bx)%7D%5C%5C%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

又因?yàn)椋?/p>

%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%20%5Cfrac%7B%5Cfrac%7Bn%5Ex(n-1)!%7D%7B%5Cprod_%7Bi%3D1%7D%5En%20(i-1%2Bx)%7D%7D%7B%5Cfrac%7B(n-1)%5Ex(n-1)!%7D%7B%5Cprod_%7Bi%3D1%7D%5En%20(i-1%2Bx)%7D%7D%20%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cbigg(%5Cfrac%7Bn%7D%7Bn-1%7D%5Cbigg)%5Ex%20%3D1%20

(這是關(guān)于x一致收斂的,證明也因較為簡(jiǎn)單而略去。)

于是:

f(x)%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%20%5Cfrac%7B(n-1)%5Ex(n-1)!%7D%7B%5Cprod_%7Bi%3D1%7D%5En%20(i-1%2Bx)%7D%20%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bn%5Exn!%7D%7B%5Cprod_%7Bi%3D0%7D%5En%20(i%2Bx)%7D%20%20

對(duì)于任意的x,由極限的唯一性,得到f(x)也是唯一的。

進(jìn)而我們得到:

%5CGamma%20(s)%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%20%5Cfrac%7B(n-1)%5Es(n-1)!%7D%7B%5Cprod_%7Bi%3D1%7D%5En%20(i-1%2Bs)%7D%20%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bn%5Es%20n!%7D%7B%5Cprod_%7Bi%3D0%7D%5En%20(i%2Bs)%7D%20%20

接下來(lái)我們來(lái)討論Euler第一型積分:

B(p%2Cq)%3D%5Cint_0%5E1%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt

這個(gè)積分形式上比較復(fù)雜,別的不說(shuō),積分內(nèi)含有兩個(gè)參數(shù),因此這一積分的討論就要多一個(gè)角度。另外,在參數(shù)取到一定的范圍時(shí),這一積分就是瑕積分,討論起來(lái)也不是很容易。

首先,p,q≥1時(shí),這是含參變量常義積分;當(dāng)p,q<1時(shí),我們將積分拆解為:

%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt%EF%BC%8C%5Cint_%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5E1%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt

而:

%5Cint_%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5E1%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt%3D%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20t%5E%7Bq-1%7D%20(1-t)%5E%7Bp-1%7D%20%5Ctext%20dt

所以只需要討論前者即可。

由于p=0時(shí),有:

%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20t%5E%7B-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt%5Cge%20%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20t%5E%7B-1%7D%20%5Ctext%20dt

因而發(fā)散,所以p≤0時(shí),就有:

%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt%5Cge%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20t%5E%7B-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt%5Cge%20%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20t%5E%7B-1%7D%20%5Ctext%20dt

發(fā)散。

當(dāng)0<p<1時(shí),做變換:

%5Cint_0%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt%3D%5Cint_%7B2%7D%5E%7B%2B%E2%88%9E%7D%20%20x%5E%7B-p-q%7D%20(x-1)%5E%7Bq-1%7D%20%5Ctext%20dx

由于:

%5Clim_%7Bx%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bx%5E%7B-p-q%7D(x-1)%5E%7Bq-1%7D%7D%7Bx%5E%7B-p-1%7D%7D%3D%20%20%5Clim_%7Bx%5Cto%2B%E2%88%9E%7D%20%5Cbigg(%5Cfrac%7Bx%7D%7Bx-1%7D%20%5Cbigg)%5E%7B1-q%7D%3D1

(還是一致收斂,還是略去。)

這樣,我們就得到此時(shí)B(p%2Cq)在p,q>0時(shí)收斂,且關(guān)于任何一個(gè)參數(shù)都是在%5B0%2C%2B%E2%88%9E)上內(nèi)閉一致收斂。并且從我們的討論過(guò)程當(dāng)中,我們可以敏銳地捕捉到一個(gè)點(diǎn):

B(p%2Cq)%3DB(q%2Cp)%5Cquad(p%2Cq%EF%BC%9E0)

另外,我們還能通過(guò)直接計(jì)算得到:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Cint_0%5E1%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt%26%3D%5Cint_%7B1%7D%5E%7B%2B%E2%88%9E%7D%20%20t%5E%7B-p-q%7D%20(t-1)%5E%7Bq-1%7D%20%5Ctext%20dt%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7Bq%7D%20%5Cint_%7B1%7D%5E%7B%2B%E2%88%9E%7D%20%20t%5E%7B-p-q%7D%20%5Ctext%20d((t-1)%5Eq)%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7Bq%7D%20%20%5Cbigg(t%5E%7B-p-q%7D%20(t-1)%5E%7Bq%7D%20%5Cbigg%7C_1%5E%7B%2B%E2%88%9E%7D-%5Cint_%7B1%7D%5E%7B%2B%E2%88%9E%7D%20%20(t-1)%5E%7Bq%7D%20%5Ctext%20d(t%5E%7B-p-q%7D)%5Cbigg)%5C%5C%0A%26%3D%5Cfrac%7Bp%2Bq%7D%7Bq%7D%5Cint_%7B1%7D%5E%7B%2B%E2%88%9E%7D%20%20t%5E%7B-p-(q%2B1)%7D%20(t-1)%5E%7B(q%2B1)-1%7D%20%5Ctext%20dt%20%5C%5C%0A%26%3D%5Cfrac%7Bp%2Bq%7D%7Bq%7D%20%5Cint_0%5E%7B1%7D%20%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq%7D%20%5Ctext%20dt%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

即:

B(p%2Cq%2B1)%3D%5Cfrac%7Bq%7D%7Bp%2Bq%7DB(p%2Cq)%20

也可以寫(xiě)作:

B(p%2B1%2Cq)%3D%5Cfrac%7Bp%7D%7Bp%2Bq%7DB(p%2Cq)%20

最后,我們指出,這兩類(lèi)積分同為Euler積分,本質(zhì)上是有一定的聯(lián)系的:

%5Cforall%20p%2Cq%EF%BC%9E0%EF%BC%8CB(p%2Cq)%3D%5Cfrac%7B%5CGamma%20(p)%5CGamma%20(q)%7D%7B%5CGamma%20(p%2Bq)%7D%20

我們這里列出幾種證明,其中比較能夠揭示本質(zhì)的,是這種:

Γ函數(shù)與Β函數(shù)之間的關(guān)系證明(1)

而參考教材上則巧妙地利用了%5CGamma%20(s)的三條性質(zhì)及其唯一確定性,證明如下:

先設(shè):

f(p)%3D%5Cfrac%7B%5CGamma%20(p%2Bq)B(p%2Cq)%7D%7B%5CGamma%20(q)%7D%20

然后:

Γ函數(shù)與Β函數(shù)之間的關(guān)系證明(2)

這里還給出了一些性質(zhì),其中有些我們已經(jīng)指出過(guò)了。

最后po個(gè)鏈接,里面的證明十分的硬核。(樂(lè))

Euler積分—B函數(shù)與Γ函數(shù) - BriChen的文章 - 知乎 https://zhuanlan.zhihu.com/p/433589729

利用兩類(lèi)Euler積分之間的聯(lián)系,我們來(lái)進(jìn)一步給出它們的一些性質(zhì)。

從第一型Euler積分的形式來(lái)看,忽略指數(shù)項(xiàng)的差異,被積函數(shù)本身是相當(dāng)對(duì)稱(chēng)的,我們可以考慮一種換元:

t%3D%5Cfrac%7B1%7D%7B2%7D%20-%5Cfrac%7B1%7D%7B2%7D%20x

于是,就有:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Cint_0%5E1%20t%5E%7Bp-1%7D%20(1-t)%5E%7Bq-1%7D%20%5Ctext%20dt%26%3D%5Cint_%7B-1%7D%5E1%20(%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B2%7D%20x)%5E%7Bp-1%7D(%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B2%7Dx)%5E%7Bq-1%7D%5Ctext%20dx%5C%5C%0A%26%3D2%5E%7B-p-q%2B2%7D%5Cint_%7B-1%7D%5E1%20(1-x)%5E%7Bp-1%7D(1%2Bx)%5E%7Bq-1%7D%5Ctext%20dx%5C%5C%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

此時(shí),若令p=q=s,就能得到:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Cint_0%5E1%20t%5E%7Bs-1%7D%20(1-t)%5E%7Bs-1%7D%20%5Ctext%20dt%26%3D2%5E%7B-2s%2B2%7D%5Cint_%7B-1%7D%5E1%20(1-x)%5E%7Bs-1%7D(1%2Bx)%5E%7Bs-1%7D%5Ctext%20dx%5C%5C%0A%26%3D2%5E%7B-2s%2B2%7D%5Cint_%7B-1%7D%5E1%20(1-x%5E2)%5E%7Bs-1%7D%5Ctext%20dx%5C%5C%0A%26%3D2%5E%7B-2s%2B2%7D%5Cbigg(%5Cint_%7B-1%7D%5E0%2B%5Cint_0%5E1%20%5Cbigg)(1-x%5E2)%5E%7Bs-1%7D%5Ctext%20dx%5C%5C%0A%26%3D2%5E%7B-2s%2B2%7D%5Cint_%7B0%7D%5E1%20%5Cfrac%7B1%7D%7B2%7D%20y%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D%20(1-y)%5E%7Bs-1%7D%5Ctext%20dy%5C%5C%0A%26%3D2%5E%7B-2s%2B1%7D%5Cint_%7B0%7D%5E1%20y%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D(1-y)%5E%7Bs-1%7D%5Ctext%20dy%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

即:

B(s%2Cs)%3D2%5E%7B-2s%2B1%7DB(%5Cfrac%7B1%7D%7B2%7D%2Cs)%20

將其改寫(xiě)為第二類(lèi)Euler積分的形式,就是:

%5Cfrac%7B%5CGamma%20(s)%5CGamma%20(s)%7D%7B%5CGamma(2s)%7D%20%3D2%5E%7B-2s%2B1%7D%5Cfrac%7B%5CGamma%20(s)%5CGamma%20(%5Cfrac%7B1%7D%7B2%7D)%7D%7B%5CGamma(s%2B%5Cfrac%7B1%7D%7B2%7D)%7D%20

我們現(xiàn)在來(lái)求%5CGamma%20(%5Cfrac%7B1%7D%7B2%7D)%20。我們使用一種比較巧妙的方式,這還是要利用到兩類(lèi)Euler積分之間的聯(lián)系。

在第一類(lèi)Euler積分當(dāng)中,令p=s,q=1-s,就有:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0AB(s%2C1-s)%26%3D%5Cint_0%5E1%20t%5E%7Bs-1%7D%20(1-t)%5E%7B-s%7D%20%5Ctext%20dt%5C%5C%0A%26%3D%5Cint_1%5E%7B%2B%E2%88%9E%7D%20t%5E%7B-1%7D%20(t-1)%5E%7B-s%7D%20%5Ctext%20dt%5C%5C%0A%26%3D%5Cint_0%5E%7B%2B%E2%88%9E%7D%20%5Cfrac%7Bt%5E%7B-s%7D%7D%7Bt%2B1%7D%20%5Ctext%20dt%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

這一積分目前我們解決不了,需要等到我們介紹過(guò)Fourier級(jí)數(shù)過(guò)后,才能夠?qū)@一結(jié)果給出證明。但是由于目前的需要,我們直接給出結(jié)果:

B(s%2C1-s)%3D%5Cfrac%7B%5Cpi%7D%7B%5Csin%20(1-s)%5Cpi%7D%20

當(dāng)我們?nèi)=0.5時(shí),就有:

B(%5Cfrac%7B1%7D%7B2%7D%2C%20%5Cfrac%7B1%7D%7B2%7D%20)%3D%5Cfrac%7B%5CGamma%20(%5Cfrac%7B1%7D%7B2%7D)%20%5CGamma%20(%5Cfrac%7B1%7D%7B2%7D)%7D%7B%5CGamma%20(1)%7D%20%3D%5CGamma(%5Cfrac%7B1%7D%7B2%7D)%5E2%3D%5Cfrac%7B%5Cpi%7D%7B%5Csin%20%5Cfrac%7B%5Cpi%7D%7B2%7D%20%7D%20%3D%5Cpi

于是:

%5CGamma%20(%5Cfrac%7B1%7D%7B2%7D)%3D%5Csqrt%7B%5Cpi%20%7D%20%20

于是,我們就得到了兩個(gè)很有用的結(jié)果:

%5CGamma%20(2s)%3D%5Cfrac%7B2%5E%7B2s-1%7D%7D%7B%5Csqrt%7B%5Cpi%7D%20%7D%20%5CGamma%20(s)%5CGamma%20(s%2B%5Cfrac%7B1%7D%7B2%7D%20)

(倍元公式)

Gamma函數(shù)倍乘公式(勒讓德倍乘公式)的推廣 - PyroTechnics的文章 - 知乎 https://zhuanlan.zhihu.com/p/435464646

%5CGamma%20(s)%5CGamma%20(1-s)%3D%5Cfrac%7B%5Cpi%7D%7B%5Csin(1-s)%5Cpi%7D%20%3D%5Cfrac%7B%5Cpi%7D%7B%5Csin%20s%5Cpi%7D%20

(余元公式)

余元公式的幾種證明方法 - fell的文章 - 知乎 https://zhuanlan.zhihu.com/p/342206090

作為應(yīng)用演示,我們來(lái)解決一個(gè)問(wèn)題:

%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cprod_%7Bi%3Dn%7D%5E%7B2n%7D%20%5Cfrac%7Bi%7D%7Bi%2B1%2Bs%7D%20%20%3D%EF%BC%9F%5Cquad(0%EF%BC%9Cs%EF%BC%9C1)

我們將倍元公式用第二類(lèi)Euler積分的極限定義改寫(xiě)為:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bn%5E%7B2s%7Dn!%7D%7B%5Cprod_%7Bi%3D0%7D%5En%20(i%2B2s)%7D%26%3D%20%20%5Cfrac%7B2%5E%7B2s-1%7D%7D%7B%5Csqrt%7B%5Cpi%7D%20%7D%20%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bn%5E%7Bs%7Dn!%7D%7B%5Cprod_%7Bi%3D0%7D%5En%20(i%2Bs%2B%5Cfrac%7B1%7D%7B2%7D)%7D%0A%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bn%5E%7Bs%2B%5Cfrac%7B1%7D%7B2%7D%7Dn!%7D%7B%5Cprod_%7Bi%3D0%7D%5En%20(i%2Bs)%7D%5C%5C%0A%26%3D%5Cfrac%7B2%5E%7B2s-1%7D%7D%7B%5Csqrt%7B%5Cpi%7D%20%7D%20%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bn%5E%7B2s%2B%5Cfrac%7B1%7D%7B2%7D%7D(n!)%5E2%7D%7B%5Cprod_%7Bi%3D0%7D%5En%20(i%2Bs%2B%5Cfrac%7B1%7D%7B2%7D)%5Cprod_%7Bi%3D0%7D%5En%20(i%2Bs)%7D%5C%5C%0A%26%3D%5Cfrac%7B2%5E%7B2s-1%7D%7D%7B%5Csqrt%7B%5Cpi%7D%20%7D%20%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7B2%5E%7B2n%2B2%7Dn%5E%7B2s%2B%5Cfrac%7B1%7D%7B2%7D%7D(n!)%5E2%7D%7B%5Cprod_%7Bi%3D0%7D%5En%20(2i%2B2s%2B1)%5Cprod_%7Bi%3D0%7D%5En%20(2i%2B2s)%7D%20%5C%5C%0A%26%3D%5Cfrac%7B2%5E%7B2s-1%7D%7D%7B%5Csqrt%7B%5Cpi%7D%20%7D%20%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7B2%5E%7B2n%2B2%7Dn%5E%7B2s%2B%5Cfrac%7B1%7D%7B2%7D%7D(n!)%5E2%7D%7B%5Cprod_%7Bi%3D0%7D%5E%7B2n%2B1%7D%20(i%2B2s)%7D%20%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

左右兩邊約去相同的項(xiàng),化簡(jiǎn)得到:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7B2%5E%7B2n%2B2%7Dn%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7Dn!%7D%7B%5Cprod_%7Bi%3Dn%7D%5E%7B2n%2B1%7D%20(i%2B2s)%7D%20%20%26%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7B2%5E%7B2n%2B2%7Dn%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D(n!)%5E2%5Cdisplaystyle%5Cfrac%7B(2n)!%7D%7Bn!%7D%20%7D%7B(2n)!%5Cprod_%7Bi%3Dn%7D%5E%7B2n%2B1%7D%20(i%2B2s)%7D%20%5C%5C%0A%26%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7B2%5E%7B2n%2B2%7Dn%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D(n!)%5E2%5Cprod_%7Bi%3Dn%2B1%7D%5E%7B2n%7D%20i%7D%7B(2n)!(n%2B2s)%5Cprod_%7Bi%3Dn%2B1%7D%5E%7B2n%2B1%7D%20(i%2B2s)%7D%5C%5C%0A%26%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7B2%5E%7B2n%2B2%7Dn%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D(n!)%5E2%7D%7B(2n)!(n%2B2s)%7D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cprod_%7Bi%3Dn%7D%5E%7B2n%7D%5Cfrac%7Bi%7D%7Bi%2B1%2B2s%7D%20%5C%5C%20%20%20%20%20%0A%26%3D%5Cfrac%7B%5Csqrt%7B%5Cpi%7D%20%7D%7B2%5E%7B2s-1%7D%7D%20%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

利用Wallis公式,等號(hào)右側(cè)第一項(xiàng)滿(mǎn)足:

%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7B2%5E%7B2n%2B2%7Dn%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D(n!)%5E2%7D%7B(2n)!(n%2B2s)%7D%3D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7B2%5E%7B2n%2B2%7Dn%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D(n!)%5E2%7D%7B(2n)!%7D%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cfrac%7Bn%7D%7Bn%2B2s%7D%20%20%3D4%5Csqrt%7B%5Cpi%7D%20

于是就有:

%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cprod_%7Bi%3Dn%7D%5E%7B2n%7D%20%5Cfrac%7Bi%7D%7Bi%2B1%2B2s%7D%20%20%3D2%5E%7B-2s%2B3%7D

即:

%5Clim_%7Bn%5Cto%2B%E2%88%9E%7D%20%5Cprod_%7Bi%3Dn%7D%5E%7B2n%7D%20%5Cfrac%7Bi%7D%7Bi%2B1%2Bs%7D%20%20%3D2%5E%7B-s%2B3%7D

最后,我們來(lái)推廣我們?cè)?jīng)介紹過(guò)的Stirling公式:


思考:

  1. 證明命題1,即%5Cln%5CGamma(s)(0%2C%2B%E2%88%9E)上的凸函數(shù);

    (利用H?lder不等式)

  2. 計(jì)算積分:

    %5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%5Ccos%20%5E%5Calpha%20x%5Csin%20%5E%5Cbeta%20x%5Ctext%20dx

  3. 計(jì)算積分:

    %5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%5Ctan%20%5E%5Calpha%20x%5Ctext%20dx

  4. 證明:%5Cln%20B(s)(0%2C%2B%E2%88%9E)上關(guān)于p的凸函數(shù);

  5. 證明:

    %5Cint_0%5E1%5Cln%20%5CGamma%20(s)%5Ctext%20ds%3D%5Cln%20%5Csqrt%7B2%5Cpi%7D%20

  6. 證明:

    %5Cint_0%5E1%20%5Csin%20%5Cpi%20s%5Cln%20%5CGamma%20(s)%5Ctext%20ds%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%20(%5Cln%20%5Cfrac%7B%5Cpi%7D%7B2%7D%2B1)%20


最後の最後に、ありがとうございました!

學(xué)不明白的數(shù)學(xué)分析(五十九)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
太保市| 麻栗坡县| 河曲县| 阜城县| 鄱阳县| 景德镇市| 和静县| 景泰县| 竹北市| 卓资县| 昌黎县| 达拉特旗| 武强县| 禹州市| 沾化县| 南靖县| 榆社县| 永清县| 阿勒泰市| 澄江县| 衡山县| 肇源县| 吐鲁番市| 青神县| 马鞍山市| 清苑县| 绥宁县| 女性| 天门市| 民和| 泗洪县| 高雄市| 称多县| 福海县| 洮南市| 彭州市| 高陵县| 安远县| 剑河县| 禄劝| 天津市|