哪里除了問題
print("hello world")
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import numpy as np
from numpy import matrix as mat
import math
# 導(dǎo)入數(shù)據(jù)
Label_location = [0.9, 1.2, 2.0]
theta_data = [60.31857894892403, 48.25486315913922, 80.4247719318987, 80.4247719318987]
lambda_data = [0.3125, 0.3125, 0.3125, 0.3125]
xi_data = [0.0, 0.9, 2.5, 0.9]
yi_data = [0.0, 0.0, 0.0, 0.0]
zi_data = [2.0, 2.0, 2.0, 0.4]
# 合并為一個矩陣,然后轉(zhuǎn)置,每一行為一組λ,xi,yi,zi。
Variable_Matrix = mat([lambda_data, xi_data, yi_data, zi_data]).T
def Func(parameter, iput): ?# 需要擬合的函數(shù),abc是包含三個參數(shù)的一個矩陣[[a],[b],[c]]
? ?x = parameter[0, 0]
? ?y = parameter[1, 0]
? ?z = parameter[2, 0]
? ?residual = mat((4*np.pi / iput[0, 0])*np.sqrt(np.square(iput[0, 1]-x)+np.square(iput[0, 2]-y)+np.square(iput[0, 3]-z)))
? ?return residual
def Deriv(parameter, iput): ?# 對函數(shù)求偏導(dǎo)
? ?x = parameter[0, 0]
? ?y = parameter[1, 0]
? ?z = parameter[2, 0]
? ?x_deriv = -4*np.pi*(iput[0, 1]-x) / (iput[0, 0] * np.sqrt(np.square(iput[0, 1]-x)+np.square(iput[0, 2]-y) + np.square(iput[0, 3]-z)))
? ?y_deriv = -4*np.pi*(iput[0, 2]-y) / (iput[0, 0] * np.sqrt(np.square(iput[0, 1]-x)+np.square(iput[0, 2]-y) + np.square(iput[0, 3]-z)))
? ?z_deriv = -4*np.pi*(iput[0, 3]-z) / (iput[0, 0] * np.sqrt(np.square(iput[0, 1]-x)+np.square(iput[0, 2]-y) + np.square(iput[0, 3]-z)))
? ?deriv_matrix = mat([x_deriv, y_deriv, z_deriv])
? ?return deriv_matrix
n = len(theta_data)
J = mat(np.zeros((n, 3))) ?# 雅克比矩陣
fx = mat(np.zeros((n, 1))) ?# f(x) ?3*1 ?誤差
fx_tmp = mat(np.zeros((n, 1)))
initialization_parameters = mat([[10], [400], [30]]) ?# 參數(shù)初始化
lase_mse = 0.0
step = 0.0
u, v = 1.0, 2.0
conve = 100
while conve:
? ?mse, mse_tmp = 0.0, 0.0
? ?step += 1
? ?for i in range(len(theta_data)):
? ? ? ?fx[i] = Func(initialization_parameters, Variable_Matrix[i]) - theta_data[i] ?# 注意不能寫成 ?y - Func ?,否則發(fā)散
? ? ? ?# print(fx[i])
? ? ? ?mse += fx[i, 0] ** 2
? ? ? ?J[i] = Deriv(initialization_parameters, Variable_Matrix[i]) ?# 數(shù)值求導(dǎo)
? ?mse = mse/n ?# 范圍約束
? ?H = J.T * J + u * np.eye(3) ?# 3*3
? ?dx = -H.I * J.T * fx ?# 注意這里有一個負(fù)號,和fx = Func - y的符號要對應(yīng)
? ?initial_parameters_tmp = initialization_parameters.copy()
? ?initial_parameters_tmp = initial_parameters_tmp + dx
? ?for j in range(len(theta_data)):
? ? ? ?fx_tmp[j] = Func(initial_parameters_tmp, Variable_Matrix[j]) - theta_data[j]
? ? ? ?mse_tmp += fx_tmp[j, 0] ** 2
? ?mse_tmp = mse_tmp/n
? ?q = (mse - mse_tmp) / ((0.5 * dx.T * (u * dx - J.T * fx))[0, 0])
? ?print(q)
? ?if q > 0:
? ? ? ?s = 1.0 / 3.0
? ? ? ?v = 2
? ? ? ?mse = mse_tmp
? ? ? ?initialization_parameters = initial_parameters_tmp
? ? ? ?temp = 1 - pow(2 * q - 1, 3)
? ? ? ?if s > temp:
? ? ? ? ? ?u = u * s
? ? ? ?else:
? ? ? ? ? ?u = u * temp
? ?else:
? ? ? ?u = u * v
? ? ? ?v = 2 * v
? ? ? ?mse = mse_tmp
? ? ? ?initialization_parameters = initial_parameters_tmp
? ?print("step = %d,parameters(mse-lase_mse) = " % step, abs(mse - lase_mse))
? ?if abs(mse - lase_mse) < math.pow(0.1, 14):
? ? ? ?break
? ?lase_mse = mse ?# 記錄上一個 mse 的位置
? ?conve -= 1
print(lase_mse)
print(initialization_parameters)
