最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Series] Arithmetic Series of Higher Order

2021-10-03 09:18 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

Chinese mathematicians of the Song-Yuan period (960 - 1368 AD) investigated finite sums related to the diagonals of Jia Xian's triangle (arithmetic triangle). The following list given names of several finite sums found in Zhu Shijie’s "Suanxue Qimeng" (1299) and "SiYuan Yujian" (1303).

"Suanxue Qimeng" 算學(xué)啟蒙 (Introduction to Mathematics)

"SiYuan Yujian" 四元玉監(jiān) (Jade Mirror of the Four Unknowns)

茭草垛
1%2B2%2B3%2B4%2B...%2Bn%20%3D%20%5Cfrac%7B1%7D%7B2!%7D%20n(n%2B1)

落一形垛
1%2B3%2B6%2B10%2B...%2B%5Cfrac%7B1%7D%7B2!%7Dn(n%2B1)%20%3D%20%5Cfrac%7B1%7D%7B3!%7Dn(n%2B1)(n%2B2)%20

撒星形垛
1%2B4%2B10%2B20%2B...%2B%5Cfrac%7B1%7D%7B3!%7Dn(n%2B1)(n%2B2)%20%3D%20%5Cfrac%7B1%7D%7B4!%7Dn(n%2B1)(n%2B2)(n%2B3)

撒星更落一形垛
1%2B5%2B15%2B35%2B...%2B%20%5Cfrac%7B1%7D%7B4!%7Dn(n%2B1)(n%2B2)(n%2B3)%3D%5Cfrac%7B1%7D%7B5!%7Dn(n%2B1)(n%2B2)(n%2B3)(n%2B4)

These finite sums are called arithmetic series of higher order, which follow the general pattern

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bp!%7Di(i%2B1)(i%2B2)...(i%2Bp-1)%20%3D%20%5Cfrac%7B1%7D%7B(p%2B1)!%7Dn(n%2B1)(n%2B2)...(n%2Bp)

Alternatively this can be expressed as

%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cbinom%7Bn%2Bp%7D%7Bp%2B1%7D

Prove this identity.


【Solution】

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cbinom%7Bp%7D%7Bp%7D%20%2B%20%5Cbinom%7Bp%2B1%7D%7Bp%7D%20%2B%20%5Cbinom%7Bp%2B2%7D%7Bp%7D%20%2B%20...%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D

Observe that %20%5Cbinom%7Bp%7D%7Bp%7D%20%3D%20%5Cbinom%7Bp%2B1%7D%7Bp%2B1%7D, hence,

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cleft%5B%5Cbinom%7Bp%2B1%7D%7Bp%2B1%7D%20%2B%20%5Cbinom%7Bp%2B1%7D%7Bp%7D%20%5Cright%5D%20%2B%20%5Cbinom%7Bp%2B2%7D%7Bp%7D%20%2B%20...%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D%20

By the binomial identity %20%5Cbinom%7Bn-1%7D%7Bk%7D%20%2B%20%5Cbinom%7Bn-1%7D%7Bk-1%7D%20%3D%20%5Cbinom%7Bn%7D%7Bk%7D, we get

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cbinom%7Bp%2B2%7D%7Bp%2B1%7D%20%2B%20%5Cbinom%7Bp%2B2%7D%7Bp%7D%20%2B%20...%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D%20

Following this step-pattern

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cleft%5B%5Cbinom%7Bp%2B2%7D%7Bp%2B1%7D%20%2B%20%5Cbinom%7Bp%2B2%7D%7Bp%7D%20%5Cright%5D%20%2B%20%5Cbinom%7Bp%2B3%7D%7Bp%7D%20%2B%20...%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D%20

until we reach the final term

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cleft%5B%5Cbinom%7Bn%2Bp-1%7D%7Bp%2B1%7D%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D%20%5Cright%5D%20

Therefore,

%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cbinom%7Bn%2Bp%7D%7Bp%2B1%7D


[Series] Arithmetic Series of Higher Order的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
寿光市| 天祝| 嘉荫县| 秭归县| 沾益县| 安宁市| 鹤峰县| 天祝| 拉萨市| 博客| 毕节市| 旬邑县| 沁水县| 新密市| 丰城市| 卢龙县| 鸡泽县| 黑山县| 土默特右旗| 隆安县| 永丰县| 嘉义县| 韩城市| 诏安县| 安乡县| 准格尔旗| 锦州市| 大邑县| 义马市| 万全县| 贡嘎县| 邹城市| 蒙城县| 老河口市| 科技| 凤台县| 白银市| 盐津县| 高青县| 沙洋县| 寻甸|