最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

函數(shù)(上)

2023-07-17 17:23 作者:24bs  | 我要投稿

x%2Cy%5Cin%20%5Cmathbb%20R,e%5E%7Bx%2B2y%7D-%5Cln(x%2B3y-2)%5Cle%204-y,求?y-x?的值。

%5Ccdots%20%5CLeftrightarrow%20e%5E%7Bx%2B2y%7D-(x%2B2y)%5Cle%20%5Cln(x%2B3y-2)-(x%2B3y-2)%2B2

由于?e%5E%7Bx%2B2y%7D-(x%2B2y)%5Cge%201%5Cln(x%2B3y-2)-(x%2B3y-2)%2B2%5Cle%201,故以上不等號均取等,后略

g(x)%3D%5Clog_2%20%5Cdfrac%7B2x%7D%7Bx%2B1%7D%5C%20(x%3E0),f(x)%3D%7Cg(x)%7C%5E2%2Bm%7Cg(x)%7C%2B3m%2B1,若?f(x)?有三個零點,求?m?的值。

f(x)%3D0?是關(guān)于?%7Cg(x)%7C 的一元二次方程。對?g(x) 分析可知其在定義域上單調(diào)遞增,值域為?(-%5Cinfty%2C2),則一個?%7Cg(x)%7C 若只對應(yīng)一個?x 當且僅當?x%3D0,由韋達定理即?3m%2B1%3D0。

f(x)%3D%5Cdfrac%7B2%5Ex%2Bn%7D%7B2%5Ex%2B2%7D,%5Cforall%20a%2Cb%2Cc%5Cin%20%5Cmathbb%20R%2Cf(a)%2Bf(b)%3Ef(c),求?n?取值范圍。

%5Ccdots%20%5CLeftrightarrow%202f_%7B%5Cinf%7D%20%5Cge(%5Ctext%7Bor%7D%3E)%5C%20%20f_%7B%5Csup%7D

反解出值域:y%3D%5Cdfrac%7B2%5Ex%2Bn%7D%7B2%5Ex%2B2%7D%5CRightarrow%202%5Ex%3D%5Cdfrac%7B2y-n%7D%7B1-n%7D%3E0%5CRightarrow%20(y-1)(y-%5Cdfrac%7Bn%7D%7B2%7D)%3C0

f(x)?定義域?%5B1%2C%2B%5Cinfty),f(2x)%3D2f(x),且當?x%5Cin%20%5B1%2C2)?時,f(x)%3Dx-1。試判斷是否?%5Cexists%20x%5Cin%20%5Cmathbb%20Z%2C%5C%20f(2%5Ex%2B1)%3D8。

由歸納法可知?f(2%5Ekx)%3D2%5Ekf(x)%2C%5C%20k%5Cin%20%5Cmathbb%20N%5E*。假設(shè)存在這樣的 x,分 x%3E0%2Cx%3D0%2Cx%3C0 討論。若 x%3E0,則 f(2%5Ex%2B1)%3Df(2%5Ex(1%2B2%5E%7B-x%7D))%3D2%5Exf(1%2B2%5E%7B-x%7D),后略;后兩種情形略去??傊淮嬖谶@樣的?x。

f(x)%3Dx%5E2%2Bax%2BaA%3D%5C%7Bx%5Cmid%20f(x)%5Cle%20x%5C%7D,B%3D%5C%7Bx%5Cmid%20f(f(x))%5Cle%20f(x)%5C%7D,A%5Cnot%3D%20%5Cvarnothing%2CA%5Csubseteq%20B,求?a?取值范圍。

由?A 非空知?a%5Cin%20(-%5Cinfty%2C3-2%5Csqrt2%5D%5Ccup%20%5B3%2B2%5Csqrt2%2C%2B%5Cinfty);因為?A%5Csubseteq%20B,故滿足?f(x)%5Cle%20x?的?x 一定也滿足?f(f(x))%5Cle%20f(x)。設(shè)?f(x)%5Cle%20x?時 x%5Cin%20%5Bx_1%2Cx_2%5D,f(x)%5Cin%20%5By_1%2Cy_2%5D,則需要滿足?%5Bx_1%2Cx_2%5D%5Csubseteq%20%5By_1%2Cy_2%5D%5CLeftrightarrow%20y_1%5Cle%20x_1%5Cle%20x_2%5Cle%20y_2。令 f(x)%3Dx?解得?x_1%3D%5Cdfrac%7B1-a-%5Csqrt%7Ba%5E2-6a%2B1%7D%7D%7B2%7D,x_2%3D%5Cdfrac%7B1-a%2B%5Csqrt%7Ba%5E2-6a%2B1%7D%7D%7B2%7D。若?y_1%3Df_%7B%5Cmin%7D%3Df(-%5Cdfrac%7Ba%7D%7B2%7D),則?y_1%5Cge%20x_1;若?y_1%3Df(x_2)%3Dx_2,則y_1%3Dx_2%5Cle%20x_1;否則,y_1%3Df(x_1)%3Dx_1,此時須滿足?-%5Cdfrac%7Ba%7D%7B2%7D%5Cle%20x_1,則?a%5Cin%20%5B0%2C6%5D,經(jīng)檢驗以上兩種情形若能取等亦包括在這種情形當中。故?a%5Cin%20%5B0%2C3-2%5Csqrt2%5D%5Ccup%20%5B3%2B2%5Csqrt2%2C6%5D

x%3E1?時,x%5E%7B-4%7De%5Ex-a%5Cln%20x%5Cge%20x%2B1?恒成立,求?a?取值范圍。

  • 法一:%5Ccdots%5CLeftrightarrow%20e%5E%7Bx-4%5Cln%20x%7D%5Cge%20a%5Cln%20x%2Bx%2B1?恒成立。又?e%5E%7Bx-4%5Cln%20x%7D%5Cge%20x-4%5Cln%20x%2B1,故令?x-4%5Cln%20x%2B1%5Cge%20x%2Ba%5Cln%20x%2B1,得?a%5Cle%20-4,取等略。這是原命題成立的充分條件,而必要性通過反證即可得到。

  • 法二:a%5Cle%20%5Cdfrac%7Bx%5E%7B-4%7De%5Ex-x-1%7D%7B%5Cln%20x%7D%5Ctriangleq%20f(x),則?f(x)%3D%5Cdfrac%7Be%5E%7Bx-4%5Cln%20x%7D-x-1%7D%7B%5Cln%20x%7D%5Cge%20%5Cdfrac%7B-4%5Cln%20x%7D%7B%5Cln%20x%7D%3D-4,可取等,故?a%5Cle%20f_%7B%5Cmin%7D%3D-4

f(x)%3D%5Clg(%5Csqrt%7Bx%5E2-2x%2B2%7D-x%2B1),g(x)%3D%5Cdfrac%7B2%5Ex%2B6%7D%7B2%5Ex%2B2%7D,判斷以下說法正確性:

A.?f(x)?為奇函數(shù)

B.?g(x)?圖像關(guān)于點?(1%2C2)?對稱

C.?F(x)%5Ctriangleq%20f(x)%2Bg(x)?在?x%5Cin%20%5B1-m%2C1%2Bm%5D?上的最大值與最小值之和為?4

D.?F(x)%5Ctriangleq%20f(x)%2Bg(x),若?F(a)%2BF(-2a%2B1)%3E4,則?a%5Cin%20(-1%2C%2B%5Cinfty)

算?f(x)%2Bf(2-x)?可知 f(x)?圖像關(guān)于點?(1%2C0) 對稱;事實上,f(0)%5Cnot%3D0,故 A 錯誤。t%3Dx-1,故 B 正確。令?t%3Dx-1,則?f(x)%3D%5Clg(%5Csqrt%7Bt%5E2%2B1%7D-t)%3D%5Clg(%5Cdfrac%7B1%7D%7B%5Csqrt%7Bt%5E2%2B1%7D%2Bt%7D),求導(dǎo)可得?g(x)?在?%5Cmathbb%20R 上單調(diào)遞減;g(x)%3D%5Cdfrac%7B2%5Ex%2B6%7D%7B2%5Ex%2B2%7D%3D1%2B%5Cdfrac%7B4%7D%7B2%5Ex%2B2%7D,故?g(x) 在?%5Cmathbb%20R 上單調(diào)遞減;又由兩函數(shù)圖像的對稱性可知 C 正確;D 正確性略。故選 BCD。


函數(shù)(上)的評論 (共 條)

分享到微博請遵守國家法律
金平| 宜宾县| 油尖旺区| 平塘县| 林西县| 宁武县| 太仓市| 武胜县| 红河县| 共和县| 武胜县| 巴林左旗| 枞阳县| 延津县| 永城市| 夏津县| 汝阳县| 新沂市| 庆元县| 武义县| 江油市| 徐汇区| 石嘴山市| 张掖市| 木里| 怀远县| 清镇市| 灵璧县| 社旗县| 什邡市| 内丘县| 合川市| 招远市| 申扎县| 秦皇岛市| 剑河县| 申扎县| 石棉县| 金平| 凤山市| 天柱县|