【數(shù)學(xué)基礎(chǔ)72】每天三道題(數(shù)學(xué)分析+解析幾何+線性代數(shù))
預(yù)備知識(shí):
設(shè)lim an=a,若a>0,an>0,則lim an^(1/n)=1;
lim(1+1/n)^n=e;
定理:數(shù)列{an}收斂的充要條件是:{an}的任何子列都收斂。
公式:(axb)^2+(ab)^2=a^2b^2;
雙重向量積:給定空間三向量,先作其中兩個(gè)向量的向量積,再作所得向量與第三個(gè)向量的向量積,那么最后的結(jié)果仍然是一向量,叫做所給三向量的雙重向量積。例如(axb)xc就是三向量a,b,c的一個(gè)雙重向量積;
性質(zhì):(axb)xc是和a,b共面且垂直于c的向量;
(axb)xc=(ac)b-(bc)a;
拉格朗日恒等式:(axb)(a'xb')=(aa')(bb')-(ab')(ba');
(axb)x(a'xb')=(a,b,b')a'-(a,b,a')b'=(a,a',b')b-(b,a',b')a;
(axb,cxd,exf)=(a,b,d)(c,e,f)-(a,b,c)(d,e,f);
右手系/左手系:設(shè)有不共面的三個(gè)向量a,b,c,將它們移到同一始點(diǎn),則a,b決定一個(gè)平面,而c指向平面的一旁,將右手四指并攏與拇指分開(kāi),使四指向掌心彎曲的方向,表示從a的方向經(jīng)過(guò)小于平角的轉(zhuǎn)動(dòng)達(dá)到b的方向,此時(shí)若拇指方向與c方向指向平面的同一旁,則稱向量組{a,b,c}構(gòu)成右手系,否則稱為左手系;
直角標(biāo)架/直角坐標(biāo)系:設(shè)i,j,k是空間中以O(shè)為起點(diǎn)的三個(gè)向量,它們兩兩垂直并且都是單位向量,則O;i,j,k稱為空間的一個(gè)以O(shè)為原點(diǎn)的直角標(biāo)架或直角坐標(biāo)系,記為{O;i,j,k};
右手直角標(biāo)架/右手直角坐標(biāo)系:如果向量i,j,k成右手系,那么{O;i,j,k}稱為一個(gè)右手架標(biāo)或右手直角坐標(biāo)系;否則稱為左手直角架標(biāo)或左手直角坐標(biāo)系;
直角坐標(biāo)系的基向量:我們把i,j,k稱為該直角坐標(biāo)系的基向量;
仿射架標(biāo)/仿射坐標(biāo)系:如果我們不要求i,j,k單位長(zhǎng)度且兩兩正交,只要求它們不共面,那么{O;i,j,k}稱為空間一個(gè)以O(shè)為原點(diǎn)的仿射架標(biāo)或仿射坐標(biāo)系;
右手仿射架標(biāo)/右手仿射坐標(biāo)系:如果向量i,j,k成右手系,那么{O;i,j,k}稱為一個(gè)右手仿射架標(biāo)或右手仿射坐標(biāo)系;否則稱為左手仿射架標(biāo)或左手直仿射坐標(biāo)系;
仿射坐標(biāo)系的基向量:我們把i,j,k稱為該仿射坐標(biāo)系的基向量;
坐標(biāo):O;i,j,k是空間的一個(gè)仿射坐標(biāo)系(直角坐標(biāo)系),則任意一個(gè)向量v可以唯一表示成v=xi+yj+zk,稱(x,y,z)為向量v在該坐標(biāo)系{O;i,j,k}下的坐標(biāo),記為v=(x,y,z);
點(diǎn)的坐標(biāo):設(shè){O;i,j,k}是空間的一個(gè)以O(shè)為原點(diǎn)的仿射坐標(biāo)系(直角坐標(biāo)系),規(guī)定P點(diǎn)的坐標(biāo)為向量OP的坐標(biāo),向量OP成為P點(diǎn)的定位向量或矢徑,若P點(diǎn)的坐標(biāo)為{x,y,z},記為P(x,y,z);
坐標(biāo)軸/坐標(biāo)平面/卦限:i,j,k所在的直線通常成為坐標(biāo)軸或分別成為x,y,z軸,每?jī)筛鴺?biāo)軸所決定的平面稱為坐標(biāo)平面或xOy,yOz,zOx坐標(biāo)平面,3個(gè)坐標(biāo)平面把空間分割成8個(gè)部分,稱為該坐標(biāo)系的8個(gè)卦限;
兩向量的內(nèi)積等于它們的對(duì)應(yīng)坐標(biāo)的乘積之和;
向量的長(zhǎng)度等于它的坐標(biāo)的平方和的平方根。
矩陣乘法運(yùn)算律——
a.結(jié)合律:(AB)C=A(BC)
b.左分配律:A(B+C)=AB+AC
c.右分配律:(B+C)D=BD+CD
d.若A是n級(jí)矩陣,單位矩陣為E,則有:AE=EA=A
e.矩陣乘法與數(shù)量乘法滿足:k(AB)=(kA)B=A(kB)
f.可逆方陣:設(shè)A為n階方陣,若存在n階方陣B,使AB=BA=E,則稱B為A的逆方陣,而稱A為可逆方陣。
矩陣A可逆的充要條件:|A|不為0——|A|為矩陣A對(duì)應(yīng)的行列式。
矩陣對(duì)應(yīng)行列式滿足:|AB|=|A||B|;
設(shè)A與B都是數(shù)域K上的n級(jí)矩陣,如果AB=E,那么A與B都是可逆矩陣,并且A^(-1)=B,B^(-1)=A。
A的伴隨矩陣A*滿足:A*=|A|A^(-1)
E(i,j)為單位矩陣i,j行對(duì)調(diào)——
方陣A可逆,A對(duì)調(diào)i,j行成B矩陣:B=E(i,j)A
方陣A可逆,A對(duì)調(diào)i,j列成B矩陣:B=AE(i,j)
矩陣的轉(zhuǎn)置:把n級(jí)矩陣A的行與列互換得到的矩陣稱為A的轉(zhuǎn)置,記作A',|A'|=|A|。
定義:設(shè)A為方陣,若A'=A,則稱A為對(duì)稱矩陣,若A'=-A,則稱A為反/斜對(duì)稱矩陣。
定義:如果AB=BA,則稱A與B可交換。
矩陣轉(zhuǎn)置運(yùn)算律——
(A+B)'=A'+B'
(kA)'=kA'
(AB)'=B'A'
定理:如果A可逆,那么A'也可逆,并且(A')^(-1)=(A^(-1))';
克萊姆法則:設(shè)A是n*n矩陣,線性方程組Ax=B——
若|A|≠0,則方程組有唯一解:xi=Δi/Δ,其中Δ=|A|,Δi為|A|中第i列換為B,其它各列與|A|相同的n階行列式(i=1,2,……,n).
參考資料:
《數(shù)學(xué)分析》(華東師范大學(xué)數(shù)學(xué)系?編)
《空間解析幾何》(高紅鑄?王敬蹇 傅若男 編著)
《高等代數(shù)題解精粹》(錢(qián)吉林?編著)
數(shù)學(xué)分析——
例題(來(lái)自《數(shù)學(xué)分析(華東師范大學(xué)數(shù)學(xué)系?編)》)——
判斷以下結(jié)論是否成立(若成立,說(shuō)明理由;若不成立,舉出反例):若{a3k-2}、{a3k-1}和{a3k}都收斂,且有相同極限,則{an}收斂。
解:該命題成立,因?yàn)閧a3k-2}、{a3k-1}和{a3k}都收斂與同一極限為a,則{an}的任一子列都收斂于a,所以{an}收斂。
解析幾何——
例題(來(lái)自《空間解析幾何(高紅鑄 王敬蹇 傅若男 編著)》)——
已知a=(3,5,6),b=(1,-2,3),求∠(a,b).
解:
cos∠(a,b)
=ab/|a||b|
=[3*1+5*(-2)+6*3]/{[(3*3+5*5+6*6)^(1/2)]{[1*1+(-2)*(-2)+3*3]^(1/2)}}
=11/{[70^(1/2)][14^(1/2)]}
=11/{14[(5)^(1/2)]}
=(11/70)[(5)^(1/2)];
∠(a,b)=arccos(11/70)[(5)^(1/2)].
高等代數(shù)——
例題(來(lái)自《高等代數(shù)題解精粹(錢(qián)吉林?編著)》)——
設(shè):
(1+λ)x1+x2+x3=λ^2+2λ
x1+(1+λ)x2+x3=λ^3+2λ^2
x1+x2+(1+λ)x3=λ^4+2λ^2
當(dāng)λ為何值時(shí)方程組有解,并求解.
解:由克萊姆法則,先求系數(shù)行列式

當(dāng)系數(shù)行列式不為0時(shí),即λ≠0且λ≠-3時(shí),原方程有唯一解:
x1=(4-λ^3)/(λ+3)
x2=(4λ^2+λ-2)/(λ+3)
x3=[(λ^3+λ-1)(λ+2)]/(λ+3)
當(dāng)λ=0,原方程組都可以化為x1+x2+x3=0,因此所求同階為x1=-x2-x3,其中x2,x3為自由未知量;
當(dāng)λ=-3,原方程無(wú)解。
到這里!