Scratch與數(shù)學(xué)的整合45
????????????????????????第45課????????不定方程的解法舉例
一、課程導(dǎo)入
????????用Scratch解普通的方程相信現(xiàn)在已經(jīng)難不到大家了,那么從現(xiàn)在開始我們就要對此進行更深入一步的學(xué)習(xí)。例如x+y=1,有多少組正整數(shù)解?像這樣的未知數(shù)個數(shù)多于方程的個數(shù)的方程就是不定方程。
二、知識儲備
????????解不定方程的步驟如下:對原方程的未知數(shù)進行變形→待定系數(shù)→整理方程的解。
三、例題解析
????????求4x+5y=20的非負數(shù)解。
????????分析:如果一個一個直接去試的話會比較麻煩,∴我們不妨對原方程變一下形。對哪個未知數(shù)變形更容易呢?如果用含x的式子表示y,那么待定的結(jié)果必須是4的倍數(shù);反之用含y的式子表示x,則待定的結(jié)果必須是5的倍數(shù)。5的倍數(shù)特征比4的倍數(shù)特征更直觀形象。那我們就選擇后者,即y=(20-4x)/5。接下來我們待定系數(shù)。所謂待定系數(shù),在這里就是先確定x的值,然后根據(jù)情況得到對應(yīng)的y的值(所有可能見下表)。最后根據(jù)表格信息整理方程的解:
y????????0????? ? ? ?1????????? ? 2????? ? ? ???3????? ? ?4
x????????5????????3.75????????2.5????????1.25????????0??
x=5,y=0;x=3.75,y=1;x=2.5,y=2;x=1.25,y=3,x=0,y=4(注:該題得到的解只是一個粗略的答案)。
四、流程圖

????????首先程序開始。第一把:清空不定方程的非負數(shù)解。第二步:詢問并回答a,b,c。第三步:將y的變量值設(shè)為0。第四步:將x變形為(c-by)/a。第五步:將x=x,y=y加入不定方程的非負數(shù)解待定x,y的系數(shù)。第六步:等待1秒并到第七步開始重復(fù)執(zhí)行a次,將y增加1同時通過套入(c-by)/a求得x的變量值進而待定出x,y的系數(shù)。第八步:通過將x=x,y=y加入不定方程的非負數(shù)解整理出原方程的解。第九步:判斷x是否包含小數(shù)點。第十步:刪除不定方程的非負數(shù)解的第a+1項。
五、列表與變量
????????列表名:不定方程的非負數(shù)解
????????變量名:a,b,c,x,y?? ?
六、代碼示例
當綠旗被點擊
刪除不定方程的非負數(shù)解的全部項目
詢問“請輸入a”
將a設(shè)為回答
詢問“請輸入b”
將b設(shè)為回答
詢問“請輸入c”
將c設(shè)為回答
將y設(shè)為0
將x設(shè)為(c-by)/a
將連接連接連接x=和x和,y=和y加入不定方程的非負數(shù)解
等待1秒
重復(fù)執(zhí)行a次
將y增加1
將x設(shè)為(c-by)/a
將連接連接連接x=和x,y=和y加入不定方程的非負數(shù)解
如果x包含.
刪除不定方程的非負數(shù)解的第a+1項
將x設(shè)為? ??
