最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

【趣味數(shù)學(xué)題】向量拉普拉斯算子

2021-09-20 09:11 作者:AoiSTZ23  | 我要投稿

鄭濤(Tao Steven Zheng)著

【問題】

%20%5Cboldsymbol%7BA%7D%20%3D%20P(x%2Cy%2Cz)%20%5Cboldsymbol%7Bi%7D%20%2B%20Q(x%2Cy%2Cz)%20%5Cboldsymbol%7Bj%7D%20%2B%20R(x%2Cy%2Cz)%20%5Cboldsymbol%7Bk%7D%20 為一個向量場(vector field) 具有三維空間中連續(xù)二階偏導(dǎo)數(shù)(continuous second partial derivatives)的分量。向量拉普拉斯算子(vector Laplacian operator)定義為 %7B%5Cnabla%7D%5E%7B2%7D%20%5Cboldsymbol%7BA%7D%20%3D%20%5Cnabla(%5Cnabla%20%5Ccdot%20%5Cboldsymbol%7BA%7D)%20-%20%5Cnabla%20%5Ctimes%20(%5Cnabla%20%5Ctimes%20%5Cboldsymbol%7BA%7D)%20。求用將 P%2C%20Q%2C%20R 表示的向量拉普拉斯算子。

【題解】

計算出 %20%5Cnabla(%5Cnabla%20%5Ccdot%20%5Cboldsymbol%7BA%7D)

%5Cnabla%20%5Ccdot%20%5Cboldsymbol%7BA%7D%20%3D%20P_x%20%2B%20Q_y%20%2B%20R_z

%5Cnabla(%5Cnabla%20%5Ccdot%20%5Cboldsymbol%7BA%7D)%20%3D%20%5Cbegin%7Bpmatrix%7D%20P_%7Bxx%7D%20%2B%20Q_%7Byx%7D%20%2B%20R_%7Bzx%7D%20%5C%5C%20P_%7Bxy%7D%20%2B%20Q_%7Byy%7D%20%2B%20R_%7Bzy%7D%20%5C%5C%20P_%7Bxz%7D%20%2B%20Q_%7Byz%7D%20%2B%20R_%7Bzz%7D%20%5Cend%7Bpmatrix%7D


計算出 %5Cnabla%20%5Ctimes%20(%5Cnabla%20%5Ctimes%20%5Cboldsymbol%7BA%7D)%20

%5Cnabla%20%5Ctimes%20%5Cboldsymbol%7BA%7D%20%3D%20%5Cbegin%7Bpmatrix%7D%20R_y%20-%20Q_z%20%5C%5C%20P_z%20-%20R_x%20%5C%5C%20Q_x%20-%20P_y%20%5Cend%7Bpmatrix%7D

%5Cnabla%20%5Ctimes%20(%5Cnabla%20%5Ctimes%20%5Cboldsymbol%7BA%7D)%20%3D%20%5Cbegin%7Bpmatrix%7D%20Q_%7Bxy%7D%20-P_%7Byy%7D%20-%20P_%7Bzz%7D%20%2B%20R_%7Bxz%7D%20%5C%5C%20-Q_%7Bxx%7D%20%2B%20P_%7Byx%7D%20%2B%20R_%7Byz%7D%20-%20Q_%7Bzz%7D%20%5C%5C%20P_%7Bzx%7D%20-%20R_%7Bxx%7D%20-%20R_%7Byy%7D%20%2B%20Q_%7Bzy%7D%20%5Cend%7Bpmatrix%7D%20

因此,

%5Cnabla(%5Cnabla%20%5Ccdot%20%5Cboldsymbol%7BA%7D)%20-%20%5Cnabla%20%5Ctimes%20(%5Cnabla%20%5Ctimes%20%5Cboldsymbol%7BA%7D)%20%3D%20%5Cbegin%7Bpmatrix%7D%20P_%7Bxx%7D%20%2B%20P_%7Byy%7D%20%2B%20P_%7Bzz%7D%20%2B%20(R_%7Bzx%7D%20-%20R_%7Bxz%7D)%20%2B%20(Q_%7Byx%7D%20-%20Q_%7Bxy%7D)%20%5C%5C%20Q_%7Bxx%7D%20%2B%20Q_%7Byy%7D%20%2B%20Q_%7Bzz%7D%20%2B%20(P_%7Bxy%7D%20-%20P_%7Byx%7D)%20%2B%20(R_%7Bzy%7D%20-%20R_%7Byz%7D)%20%5C%5C%20R_%7Bxx%7D%20%2B%20R_%7Byy%7D%20%2B%20R_%7Bzz%7D%20%2B%20(P_%7Bxz%7D%20-%20P_%7Bzx%7D)%20%2B%20(Q_%7Byz%7D%20-%20Q_%7Bzy%7D)%20%5Cend%7Bpmatrix%7D

根據(jù)克萊羅混合偏導(dǎo)數(shù)定理(Clairaut's theorem of mixed partials),上述向量中的每個括號都等于零;所以,

%20%5Cnabla(%5Cnabla%20%5Ccdot%20%5Cboldsymbol%7BA%7D)%20-%20%5Cnabla%20%5Ctimes%20(%5Cnabla%20%5Ctimes%20%5Cboldsymbol%7BA%7D)%20%3D%0A%5Cbegin%7Bpmatrix%7D%20P_%7Bxx%7D%20%2B%20P_%7Byy%7D%20%2B%20P_%7Bzz%7D%20%5C%5C%20Q_%7Bxx%7D%20%2B%20Q_%7Byy%7D%20%2B%20Q_%7Bzz%7D%20%5C%5C%20R_%7Bxx%7D%20%2B%20R_%7Byy%7D%20%2B%20R_%7Bzz%7D%20%5Cend%7Bpmatrix%7D

此表達(dá)式可以簡約地寫成

%7B%5Cnabla%7D%5E%7B2%7D%20%5Cboldsymbol%7BA%7D%20%3D%20%5Cbegin%7Bpmatrix%7D%20%7B%5Cnabla%7D%5E%7B2%7D%20P%20%5C%5C%20%7B%5Cnabla%7D%5E%7B2%7D%20Q%20%5C%5C%20%7B%5Cnabla%7D%5E%7B2%7D%20R%20%5Cend%7Bpmatrix%7D




【趣味數(shù)學(xué)題】向量拉普拉斯算子的評論 (共 條)

分享到微博請遵守國家法律
宾阳县| 东莞市| 资源县| 阳高县| 镇赉县| 同仁县| 田林县| 博罗县| 海兴县| 黄平县| 新宁县| 泾阳县| 新余市| 青阳县| 长汀县| 南充市| 西峡县| 锡林浩特市| 鄂托克旗| 安西县| 如皋市| 治多县| 枣庄市| 富阳市| 南康市| 油尖旺区| 晋州市| 无锡市| 油尖旺区| 读书| 武陟县| 盈江县| 文登市| 通渭县| 大姚县| 佛学| 卢龙县| 肃宁县| 宁南县| 志丹县| 项城市|