最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

SJTU Signal&System 期末整理

2023-07-28 01:28 作者:Elittocs  | 我要投稿

1 基本概念

系統(tǒng)的性質(system properties):(1)記憶系統(tǒng)(memory system):輸入包含當前時刻之外的其他時刻;無記憶系統(tǒng)(memoryless system):輸入僅與當前時刻相關;(2)因果系統(tǒng)(casual system):輸出只取決于當前和該時刻之前的輸入;(3)穩(wěn)定性(stability):%5Csum_%7Bk%20%3D%20-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%7B%7Ch%5Bn%5D%7C%20%3C%20%5Cinfty%7D%20?,%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%7Ch(t)%7Cdt%20%3C%20%5Cinfty;(4)時變性(time invariance):系統(tǒng)自身性質與時間是否相關(判斷方法:對信號先時移再變換與先變換再時移是否相等)(5)線性性(linearity):判斷方法,已知 x(t)%20%5Crightarrow%20y(t)?, 計算 ax_1(t)%2Bbx_2(t)%20%5Crightarrow%20ay_1(t)%20%2B%20by_2(t)是否成立

2 求解卷積(convolution)

Convolution Sum

y%5Bn%5D%20%3D%20...%2Bx%5B-1%5Dh%5Bn%2B1%5D%2Bx%5B0%5Dh%5Bn%5D%2Bx%5B1%5Dh%5Bn-1%5D%2B...%3D%5Csum_%7Bk%20%3D%20-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%7Bx%5Bk%5Dh%5Bn-k%5D%7D

Convolution Integral

y(t)%20%3D%20%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20x(%5Ctau)h(t-%5Ctau)%20d%5Ctau%20%5Ctriangleq%20x(t)%20*%20h(t)

卷積的求解法:

  • 常用:圖解法(畫出x和h,確定重合區(qū)域,最后計算即可)

  • 利用性質計算

3 求解微分方程(Differential Equation)

高數(shù)中教的是通解+特解的解法,這里不再贅述,而從物理意義上,我們更多使用零輸入響應和零狀態(tài)響應來理解

  • 零輸入響應(zero-input response):理解成x(t) = 0

  • 零狀態(tài)響應(zero-state response):理解成y(0) = y'(0) = ?y''(0) = ... = 0

具體求解可以書上或者作業(yè)題找一道練練手,反正就是解兩個微分方程唄,靠高數(shù)了

4 傅里葉級數(shù)(Fourier Series)

對于滿足Dirichlet條件的周期函數(shù),傅里葉級數(shù)可以把一些類波函數(shù)表示成一些三角函數(shù)相加

連續(xù)時間域上的傅里葉級數(shù)(CTFS)

x(t)%20%3D%20%5Csum_%7Bk%20%3D%20-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%7Ba_k%20e%5E%7Bjk%5Comega_%7B0%7Dt%7D%7D

a_0%20%3D%20%5Cfrac%7B1%7D%7BT%7D%20%5Cint_%7BT%7Dx(t)%20dt

a_k%20%3D%20%5Cfrac%7B1%7D%7BT%7D%20%5Cint_%7BT%7Dx(t)e%5E%7B-jk%5Comega_%7B0%7Dt%7D%20dt

CTFS性質

  • 線性性:x(t)%20%5Cleftrightarrow%20a_k%20%2C%20y(t)%20%5Cleftrightarrow%20b_k%20 ,則 ?Ax(t)%2BBy(t)%20%5Cleftrightarrow%20Aa_k%2BBb_k

  • Time Shifting:x(t)%20%5Cleftrightarrow%20a_k?,則?%20%20x(t)%20%5Cleftrightarrow%20a_k

  • Time Reversal:%20%20x(t)%20%5Cleftrightarrow%20a_k, 則?x(-t)%20%5Cleftrightarrow%20a_%20%7B-k%7D

  • 共軛:x(t)%20%5Cleftrightarrow%20a_k?, 則 ?x%5E%7B*%7D(t)%20%5Cleftrightarrow%20a_%7B-k%7D%5E%7B*%7D%20

  • 微分性: x(t)%20%5Cleftrightarrow%20a_k?, 則 ?%5Cfrac%7Bdx(t)%7D%7Bdt%7D%20%5Cleftrightarrow%20(jk%5Comega_0)a_k?

  • 積分性: ?x(t)%20%5Cleftrightarrow%20a_k? , 則 ?%5Cint_%7B-%5Cinfty%7D%5E%7Bt%7Dx(t)dt%20%5Cleftrightarrow%20%5Cfrac%7B1%7D%7Bjk%5Comega_0%7Da_k%20%20

  • 相乘: x(t)%20%5Cleftrightarrow%20a_k%20%2C%20y(t)%20%5Cleftrightarrow%20b_k%20,則?%20x(t)y(t)%20%5Cleftrightarrow%20a_k*b_k

Parseval Relation(等式的兩邊均代表平均功率)

%5Cfrac%7B1%7D%7BT%7D%5Cint_%7BT%7D%7Cx(t)%7C%5E%7B2%7Ddt%20%3D%20%5Csum_%7Bk%20%3D%20-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%7B%7Ca_k%7C%5E%7B2%7D%7D


離散時間域上的傅里葉級數(shù)(DTFS)

x%5Bn%5D%20%3D%20%5Csum_%7Bk%20%3D%20%3CN%3E%7D%5E%7B%7D%20%7Ba_k%20e%5E%7Bjk(2%5Cpi%20%2FN)n%7D%7D

a_k%20%3D%5Cfrac%7B1%7D%7BN%7D%20%5Csum_%7Bn%20%3D%20%3CN%3E%7D%5E%7B%7D%20%7Bx%5Bn%5D%20e%5E%7B-jk%5Comega_0%20n%7D%7D

常見求FS的方法,

  • 定義法:利用CTFS和DTFS的系數(shù)定義來求

  • 運用展開式,將三角函數(shù)展開為指數(shù)形式,常用公式 cos%5Comega%20n%20%3D%20%5Cfrac%7B1%7D%7B2%7D(e%5E%7Bj%5Comega%20n%7D%20%2B%20e%5E%7B-j%5Comega%20n%7D)?, sin%5Comega%20n%20%3D%20%5Cfrac%7B1%7D%7B2j%7D(e%5E%7Bj%5Comega%20n%7D%20-%20e%5E%7B-j%5Comega%20n%7D)?,然后比較系數(shù)即可

5 傅里葉變換

連續(xù)時間傅里葉變換(CTFT)

X(j%5Comega)%20%3D%20%5Cint_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%7D%20x(t)e%5E%7B-j%5Comega%20t%7Ddt

x(t)%20%3D%20%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%7D%20X(j%5Comega)e%5E%7Bj%5Comega%20t%7Dd%5Comega

然后這里主要涉及到的題型是傅里葉變換的求解,同時從這幾年期末考試的情況來看,基本的傅里葉變換、拉普拉斯變換和z變換是會在appendix里面給出的,所以不需要去背常用的一些FT/LT/ZT,我們需要重點關注的是性質,然后靈活應用性質即可。對于性質,個人建議的學習方法是考前全部自己手推一遍,然后現(xiàn)在復習的時候就盡可能不要翻書了,把性質要牢記于心。上學期考數(shù)理方法的時候就感覺這個復習方法很好用,性質很快就熟記了

CTFT性質

  • 線性性:x(t)%20%5Cleftrightarrow%20X(j%5Comega)%20%2C%20y(t)%20%5Cleftrightarrow%20Y(j%5Comega)%20,則?%20Ax(t)%2BBy(t)%20%5Cleftrightarrow%20A%20X(j%5Comega)%2BBY(j%5Comega)

  • Time Shifting: x(t)%20%5Cleftrightarrow%20X(j%5Comega)?

  • Frequency Shifting: x(t)%20%5Cleftrightarrow%20X(j%5Comega), 則 ?x(t)e%5E%7B%5Cpm%20j%5Comega_0%20t%7D%20%5Cleftrightarrow%20X%5Bj(%5Comega%20%5Cpm%20%5Comega_0)%5D%20

  • Time/Frequency Scaling: ?x(t)%20%5Cleftrightarrow%20X(j%5Comega), 則 ?x(at)%20%5Cleftrightarrow%20%5Cfrac%7B1%7D%7B%7Ca%7C%7DX(%5Cfrac%7Bj%5Comega%7D%7Ba%7D)

  • 共軛: ?x(t)%20%5Cleftrightarrow%20X(j%5Comega)?, 則 ?x%5E%7B*%7D(t)%20%5Cleftrightarrow%20X%5E%7B*%7D(-j%5Comega)%20

  • 微分性: x(t)%20%5Cleftrightarrow%20X(j%5Comega), 則 ?%20%5Cfrac%7Bdx(t)%7D%7Bdt%7D%20%5Cleftrightarrow%20j%5Comega%20X(j%5Comega)%20

  • 積分性: x(t)%20%5Cleftrightarrow%20X(j%5Comega) , 則 ?%5Cint_%7B-%5Cinfty%7D%5E%7Bt%7Dx(t)dt%20%5Cleftrightarrow%20%5Cfrac%7B1%7D%7Bj%5Comega%7DX(j%5Comega)%20%2B%20%5Cpi%20X(0)%5Cdelta%20(%5Comega)%20

  • 對偶性:?X(j%5Comega)%20%3D%20%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7Dx(t)e%5E%7B-j%5Comega%20t%7Ddt%2C%20x(t)%20%3D%20%5Cfrac%7B1%7D%7B2%5Cpi%7D%20%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7DX(j%5Comega)e%5E%7Bj%5Comega%20t%7Dd%5Comega

  • 相乘: y(t)%20%3D%20h(t)x(t)%20,則 ?Y(j%5Comega)%20%3D%20%5Cfrac%7B1%7D%7B2%5Cpi%7D%20H(j%5Comega)*%20X(j%5Comega)

  • Parseval Relation

    %5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%7Cx(j%5Comega)%7C%5E%7B2%7Dd%5Comega%20%3D%20%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%7B%7Cx(t)%7C%5E%7B2%7D%20dt%7D


離散時間傅里葉變換(DTFT)

X(e%5E%7Bj%5Comega%7D)%20%3D%20%5Csum_%7Bn%20%3D%20-%5Cinfty%7D%5E%7B%2B%5Cinfty%7D%20x%5Bn%5De%5E%7B-j%5Comega%20n%7D

x%5Bn%5D%20%3D%20%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint_%7B2%5Cpi%7D%20X(e%5E%7Bj%5Comega%7D)e%5E%7Bj%5Comega%20n%7Dd%5Comega

DTFT性質

  • 線性性: x%5Bn%5D%20%5Cleftrightarrow%20X(e%5E%7Bj%5Comega%7D)%20%2C%20y%5Bn%5D%20%5Cleftrightarrow%20Y(e%5E%7Bj%5Comega%7D)%EF%BC%8C%E5%88%99Ax%5Bn%5D%2BBy%5Bn%5D%20%5Cleftrightarrow%20A%20X(e%5E%7Bj%5Comega%7D)%2BBY(e%5E%7Bj%5Comega%7D)

  • Time Shifting: ?x%5Bn%5D%20%5Cleftrightarrow%20X(e%5E%7Bj%5Comega%7D)%20%EF%BC%8C%E5%88%99x%5Bn-n_0%5D%20%5Cleftrightarrow%20X(e%5E%7Bj%5Comega%7D)%20e%5E%7B-j%5Comega%20n_0%7D?,

  • Frequency Shifting:x%5Bn%5D%20%5Cleftrightarrow%20X(e%5E%7Bj%5Comega%7D)%20%EF%BC%8C%E5%88%99x%5Bn%5De%5E%7B%5Cpm%20j%5Comega_0%20n%7D%20%5Cleftrightarrow%20X%5Be%5E%7Bj(%5Comega%20%5Cpm%20%5Comega_0)%7D%5D%20

  • 共軛: x%5Bn%5D%20%5Cleftrightarrow%20X(e%5E%7Bj%5Comega%7D)%20%EF%BC%8C%E5%88%99%20x%5E%7B*%7D%5Bn%5D%20%5Cleftrightarrow%20X%5E%7B*%7D(e%5E%7B-j%5Comega%7D)%20??

  • 微分性: x%5Bn%5D%20%5Cleftrightarrow%20X(e%5E%7Bj%5Comega%7D)%20 , 則 ?x%5Bn%5D-x%5Bn-1%5D%20%5Cleftrightarrow%20(1-e%5E%7B-j%5Comega%7D)X(e%5E%7Bj%5Comega%7D)%20

  • 積分性: x%5Bn%5D%20%5Cleftrightarrow%20X(e%5E%7Bj%5Comega%7D)%20 , 則 ?%5Csum_%7B-%5Cinfty%7D%5E%7Bn%7Dx%5Bn%5D%20%5Cleftrightarrow%20%5Cfrac%7B1%7D%7B1-e%5E%7B-j%5Comega%7D%7DX(e%5E%7Bj%5Comega%7D)%20%2B%20%5Cpi%20X(1)%5Csum_%7Bl%3D-%5Cinfty%7D%5E%7Bn%7D%20%5Cdelta%5B%5Comega%20-%202%5Cpi%20l%5D%20

  • 相乘: y%5Bn%5D%20%3D%20h%5Bn%5Dx%5Bn%5D%EF%BC%8C%E5%88%99Y(j%5Comega)%20%3D%20%5Cfrac%7B1%7D%7B2%5Cpi%7D%20H(e%5E%7Bj%5Comega%7D)*%20X(e%5E%7Bj%5Comega%7D)

  • 卷積: y%5Bn%5D%20%3D%20h%5Bn%5D%20*%20x%5Bn%5D%20%EF%BC%8C%E5%88%99Y(e%5E%7Bj%5Comega%7D)%20%3D%20H(e%5E%7Bj%5Comega%7D)%20X(e%5E%7Bj%5Comega%7D)

  • Parseval Relation

    %5Csum_%7Bn%20%3D%20-%5Cinfty%7D%5E%7B%5Cinfty%7D%7Cx%5Bn%5D%7C%5E%7B2%7D%20%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%20%5Cint_%7B2%5Cpi%7D%5E%7B%7D%20%7B%7Cx(e%5E%7Bj%5Comega%7D)%7C%5E%7B2%7D%20d%5Comega%7D


System Analysis

主要利用的性質

  • 微分性: x(t)%20%5Cleftrightarrow%20X(j%5Comega)%20%EF%BC%8C%E5%88%99%20%5Cfrac%7Bdx(t)%7D%7Bdt%7D%20%5Cleftrightarrow%20j%5Comega%20X(j%5Comega)%20

  • 積分性:x(t)%20%5Cleftrightarrow%20X(j%5Comega)%20%EF%BC%8C%E5%88%99%5Cint_%7B-%5Cinfty%7D%5E%7Bt%7Dx(t)dt%20%5Cleftrightarrow%20%20%5Cfrac%7B1%7D%7Bj%5Comega%7DX(j%5Comega)%20%2B%20%5Cpi%20X(0)%5Cdelta%20(%5Comega)%20

E.G

%5Cfrac%7Bd%5E%7B2%7Dy(t)%7D%7Bdt%5E%7B2%7D%7D%20%2B%204%5Cfrac%7Bdy(t)%7D%7Bdt%7D%20%2B%203y(t)%20%3D%20%5Cfrac%7Bdx(t)%7D%7Bdt%7D%20%2B%202x(t)

解答:利用微分性可得

H(j%5Comega)%20%3D%20%5Cfrac%7BY(j%5Comega)%7D%7BX(j%5Comega)%7D%20%3D%20%5Cfrac%7Bj%5Comega%20%2B%202%7D%7B(j%5Comega%20%2B%203)(j%5Comega%20%2B%201)%7D%20%3D%20%5Cfrac%7B1%2F2%7D%7Bj%5Comega%20%2B%203%7D%20%2B%20%5Cfrac%7B1%2F2%7D%7Bj%5Comega%20%2B%201%7D

h(t)%20%3D%200.5%20e%5E%7B-3t%7Du(t)%20%2B%200.5%20e%5E%7B-t%7Du(t)%20 (利用基本的Pair即可)


調制與解調(Modulation & Demodulation)

可以看一個例子來理解,這一塊基本考試就是這一種方式了,會考察調制的結果,然后設計一個解調函數(shù)。

調制結果的計算比較簡單,只需要利用公式

r(t)%20%3D%20s(t)p(t)%20%5Cleftrightarrow%20%20R(j%5Comega)%20%3D%20%5Cfrac%7B1%7D%7B2%5Cpi%7D%5BS(j%5Comega)*%20P(j%5Comega)%5D

解調的話一般來說還是需要利用函數(shù)平移,然后利用一個低通濾波器即可。這一塊要求不高,簡單理解即可。

采樣(Sampling)

采樣定理就是需要保證采樣值可以包含原始信號的所有信息,被采樣的信號可以不失真地還原成原始信號。

要求:?f_s%20%3E%202f_%7Bmax%7D


6 拉普拉斯變換(Laplace Transform)

X(s)%20%3D%20%5Cint_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%7D%20x(t)e%5E%7B-s%20t%7Ddt

Laplace Tranform和Fourier Transform之間重要的區(qū)別在于LT有ROC限制,滿足條件的ROC應該是使得%20%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7Dx(t)e%5E%7B-%5Csigma%20t%7Ddt%20%3C%20%5Cinfty%0A?成立的 Re{s}

關于ROC的pole圖,大家可以參考一下其他資料(受篇幅限制),理解起來不難,有些題可能需要你畫出來pole。

求Laplace反變換, E.G.

X(s)%20%3D%20%5Cfrac%7Bs%2B3%7D%7B(s%2B1)(s-2)%7D

求解方法,先拆分成常見形式(系數(shù)可以用留數(shù)定理,很快可以算出來),最后別忘了對ROC分類討論

X(s)%20%3D%20%5Cfrac%7B-2%2F3%7D%7Bs%2B1%7D%20%2B%20%5Cfrac%7B5%2F3%7D%7Bs-2%7D

(1)%20x(t)%20%3D%20-(%5Cfrac%7B-2%7D%7B3%7De%5E%7B-t%7D%20%2B%20%5Cfrac%7B5%7D%7B3%7De%5E%7B2t%7D)u(-t)%20%5Cquad%20ROC%3A%20Re%5C%7Bs%5C%7D%20%3C%20-1

(2)%20x(t)%20%3D%20-%5Cfrac%7B2%7D%7B3%7De%5E%7B-t%7Du(t)%20-%20%5Cfrac%7B5%7D%7B3%7De%5E%7B2t%7Du(-t)%20%5Cquad%20ROC%3A%20-1%3C%20Re%5C%7Bs%5C%7D%20%3C%202

(3)%20x(t)%20%3D%20-%5Cfrac%7B2%7D%7B3%7De%5E%7B-t%7Du(t)%20%2B%20%5Cfrac%7B5%7D%7B3%7De%5E%7B2t%7Du(t)%20%5Cquad%20ROC%3A%20%20Re%5C%7Bs%5C%7D%20%3E%202

其他一些常見形式,

  • %5Cfrac%7B1%7D%7Bs%5E%7B3%7D(s-1)%7D%20%3D%20%5Cfrac%7BK_1%7D%7Bs%7D%20%2B%20%5Cfrac%7BK_2%7D%7Bs%5E%7B2%7D%7D%20%2B%20%5Cfrac%7BK_3%7D%7Bs%5E%7B3%7D%7D%20%2B%20%5Cfrac%7BK_4%7D%7Bs-1%7D%20, 待定系數(shù)同樣用留數(shù)定理可快速求解

  • %20%5Cfrac%7BMs%2BN%7D%7B(s-%5Calpha)%5E%7B2%7D%2B%5Cbeta%5E%7B2%7D%7D%20%3D%20%5Cfrac%7BK_1%7D%7Bs-%5Calpha%20-%20j%5Cbeta%7D%20%2B%20%5Cfrac%7BK_2%7D%7Bs-%5Calpha%20%2Bj%5Cbeta%7D?,一般可以寫成三角函數(shù)的形式

LT性質與FT類似,在此就不占用空間啦(主要b站有公式上限orz)

初值/終值定理

x(0%5E%7B%2B%7D)%20%3D%20%5Clim_%7Bs%20%5Crightarrow%20%5Cinfty%7DsX(s)

lim_%7Bt%20%5Crightarrow%20%5Cinfty%7D%20x(t)%3D%20lim_%7Bs%20%5Crightarrow%200%7DsX(s)


system是否casual/stable的判斷

  • casual system:最右端極點在右半平面

  • stable system:jw軸包含在ROC內即可

Steady-state Response

輸入為

x(t)%20%3D%20Kcos(%5Comega_0%20t%20%2B%5Ctheta)u(t)

H(j%5Comega)%3D%7CH(j%5Comega)%7Ce%5E%7Bj%5Cphi(%5Comega)%7D

輸出為

y(t)%3D%7CH(j%5Comega_0)%7CKcos%5B%5Comega_0%20t%20%2B%20%5Ctheta%20%2B%20%5Cphi(%5Comega_0)%5D

然后相關的系統(tǒng)框圖需要有一定了解,個人認為系統(tǒng)框圖可以考場現(xiàn)推,沒有太大的必要死記硬背,就先把x的一階二階導設出來,然后化簡式子連接即可。

然后還有一類題是用LT解微分方程,有初始值時,需要注意以下即可

%5Cfrac%7Bdx(t)%7D%7Bdt%7D%20%5Cleftrightarrow%20sX(s)%20-%20x(0%5E%7B-%7D)

%5Cfrac%7Bd%5E%7B2%7Dx(t)%7D%7Bdt%5E%7B2%7D%7D%20%5Cleftrightarrow%20s%5E%7B2%7DX(s)%20-%20sx(0%5E%7B-%7D)%20-%20x%5E%7B'%7D(0%5E%7B-%7D)


7 Z變換(Z Transform)

x%5Bn%5D%20%5Cleftrightarrow%20X(z)%20%3D%20%5Csum_%7Bn%20%3D%20-%5Cinfty%7D%5E%7B%5Cinfty%7D%20x%5Bn%5Dz%5E%7B-n%7D

最常見的z變換pair基本就是 a%5E%7Bn%7Du(n)%20%5Cleftrightarrow%20%5Cfrac%7B1%7D%7B1-az%5E%7B-1%7D%7D然后針對ROC,x[n]若為右單邊, %7Cz%7C%3Er_0?; x[n]若為左單邊, %7Cz%7C%3Cr_0%20?; x[n]若為雙邊, 是一個圓環(huán)

%5Cfrac%7Bz%7D%7Bz-a%7D%20%20%5Cleftrightarrow%20%5Cbegin%7Bcases%7D%20a%5E%7Bn%7Du(n)%20%5Cquad%20%7Cz%7C%20%3E%20%7Ca%7C%20%5C%5C%20-a%5E%7Bn%7Du(-n-1)%20%5Cquad%20%7Cz%7C%20%3C%20%7Ca%7C%20%5Cend%7Bcases%7D


反z變換的求法

  • 先做%20%5Cfrac%7BX(z)%7D%7Bz%7D?, 然后利用留數(shù)定理拆分成以下形式%5Cfrac%7BA_0%7D%7Bz%7D%20%2B%20%5Cfrac%7BA_1%7D%7Bz-z_%7B1%7D%7D%20%2B%20%5Cfrac%7BA_2%7D%7Bz-z_2%7D%2B...%2B%5Cfrac%7BA_N%7D%7Bz-z_N%7D

  • 得到反變換形式,x(n)%20%3D%20%5Csum_%7Bi%20%3D%201%7D%5E%7BN%7DA_i%20(z_i)%5E%7Bn%7Du(n)

ZT性質與FT類似,在此就不占用空間啦(主要b站有公式上限orz)

初值定理與終值定理

x%5B0%5D%20%3D%20%5Clim_%7Bz%20%5Crightarrow%20%5Cinfty%7D%20X(z)

%5Clim_%7Bn%20%5Crightarrow%20%5Cinfty%7D%20x%5Bn%5D%20%3D%20%5Clim_%7Bz%20%5Crightarrow%201%7D%20(z-1)X(z)


system是否casual/stable的判斷

  • LTI stable: ROC包含單位圓

  • LTI casual: 在無窮遠處收斂,即H(z)分母階數(shù)比分子高,ROC包含z平面上的無窮

系統(tǒng)框圖個人感覺和Laplace差不多,其實這仨掌握一個其他都是同理的。

解微分方程:

  • x%5Bn%5D%20%5Cleftrightarrow%20X(z)

  • x%5Bn-1%5D%20%5Cleftrightarrow%20z%5E%7B-1%7DX(z)%20%2Bx%5B-1%5D

  • x%5Bn-2%5D%20%5Cleftrightarrow%20z%5E%7B-2%7DX(z)%20%2Bz%5E%7B-1%7Dx%5B-1%5D%2Bx%5B-2%5D

  • x%5Bn%2B1%5D%20%5Cleftrightarrow%20zX(z)%20-zx%5B0%5D

  • x%5Bn%2B2%5D%20%5Cleftrightarrow%20z%5E%7B2%7DX(z)%20-z%5E%7B2%7Dx%5B0%5D-zx%5B1%5D

歡迎各位大佬提出建議啦~b站只允許插100個公式+圖片,所以很多內容被迫刪除,選取了最重要+最基礎的一些

SJTU Signal&System 期末整理的評論 (共 條)

分享到微博請遵守國家法律
布尔津县| 会泽县| 无锡市| 贵阳市| 临江市| 林西县| 伊金霍洛旗| 如皋市| 措美县| 咸阳市| 武汉市| 新巴尔虎右旗| 湟源县| 资溪县| 遵化市| 称多县| 南安市| 蚌埠市| 察隅县| 城固县| 安塞县| 康保县| 朝阳市| 天峨县| 佳木斯市| 长海县| 资兴市| 斗六市| 永城市| 新乐市| 罗江县| 浑源县| 兰州市| 井冈山市| 阿尔山市| 微博| 六安市| 甘泉县| 左权县| 卓资县| 嘉善县|