最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

麥克斯韋方程組的解

2021-11-07 23:57 作者:偏謬Lyx  | 我要投稿

本文主要討論如何從已知的場源?%5Crho(%5Cmathbf%7Br%7D%2Ct)%5Cmathbf%7Bj%7D(%5Cmathbf%7Br%7D%2Ct)?來求解電磁場。閱讀本文需要具備電動力學和矢量分析的基礎(chǔ)知識。

場方程

從麥克斯韋方程組出發(fā),

  1. %5Cnabla%5Ccdot%5Cmathbf%7BE%7D%3D%5Crho%2F%5Cvarepsilon_0

  2. %5Cnabla%5Ccdot%5Cmathbf%7BB%7D%3D0

  3. %5Cnabla%5Ctimes%5Cmathbf%7BE%7D%3D-%5Cpartial_t%5Cmathbf%7BB%7D

  4. %5Cnabla%5Ctimes%5Cmathbf%7BB%7D%3D%5Cmu_0%5C%2C%5Cmathbf%7Bj%7D%2B%5Cmu_0%5Cvarepsilon_0%5C%2C%5Cpartial_t%5Cmathbf%7BE%7D

(2) 式表明,存在矢量場 %5Cmathbf%7BA%7D(%5Cmathbf%7Br%7D%2Ct),使得

%5Cmathbf%7BB%7D%20%3D%20%5Cnabla%20%5Ctimes%20%5Cmathbf%7BA%7D

代入 (3) 式,并交換求導次序可得,

%5Cnabla%5Ctimes%5Cleft(%5Cmathbf%7BE%7D%2B%5Cpartial_t%5Cmathbf%7BA%7D%5Cright)%3D0

上式括號內(nèi)的部分為無旋場,說明存在標量場?%5Cvarphi(%5Cmathbf%7Br%7D%2Ct),使得

%5Cmathbf%7BE%7D%2B%5Cpartial_t%5Cmathbf%7BA%7D%3D-%5Cnabla%5Cvarphi

于是電磁場可以表示為,

%5Cbegin%7Bcases%7D%0A%5Cmathbf%7BB%7D%3D%5Cnabla%5Ctimes%5Cmathbf%7BA%7D%5C%5C%0A%25%0A%5Cmathbf%7BE%7D%3D-%5Cnabla%5Cvarphi-%5Cpartial_t%5Cmathbf%7BA%7D%0A%5Cend%7Bcases%7D

其中?%5Cvarphi?為電勢,%5Cmathbf%7BA%7D?為磁矢勢。將這兩個式子代入 (1) (4) 兩式,可以得到勢場的場方程,

%5Cbegin%7Bcases%7D%0A%5Cnabla%5E2%5Cvarphi%2B%5Cpartial_t%5Cleft(%5Cnabla%5Ccdot%5Cmathbf%7BA%7D%5Cright)%2B%5Crho%2F%5Cvarepsilon_0%3D0%5C%5C%0A%25%0A%5Cnabla%5E2%5Cmathbf%7BA%7D-c%5E%7B-2%7D%5Cpartial_t%5E2%5Cmathbf%7BA%7D-%5Cnabla%5Cleft(%5Cnabla%5Ccdot%5Cmathbf%7BA%7D%2Bc%5E%7B-2%7D%5Cpartial_t%5Cvarphi%5Cright)%2B%5Cmu_0%5C%2C%5Cmathbf%7Bj%7D%3D0%0A%5Cend%7Bcases%7D

其中?c%3D1%2F%5Csqrt%7B%5Cmu_0%5Cvarepsilon_0%7D?為真空中的光速。

容易驗證,對任意標量場?%5Clambda(%5Cmathbf%7Br%7D%2Ct),當?%5Cmathbf%7BA%7D%2C%5Cvarphi 進行如下聯(lián)合變換時,

%5Cbegin%7Bcases%7D%0A%5Cmathbf%7BA%7D'%3D%5Cmathbf%7BA%7D%2B%5Cnabla%5Clambda%5C%5C%0A%25%0A%5Cvarphi'%3D%5Cvarphi-%5Cpartial_t%5Clambda%0A%5Cend%7Bcases%7D

電磁場保持不變。該變換稱為規(guī)范變換。

%5Cbegin%7Bsplit%7D%0A%5Cmathbf%7BB%7D'%26%3D%5Cnabla%5Ctimes%5Cmathbf%7BA%7D'%5C%5C%0A%25%0A%26%3D%5Cnabla%5Ctimes%5Cmathbf%7BA%7D%2B%5Cnabla%5Ctimes%5Cnabla%5Clambda%5C%5C%0A%25%0A%26%3D%5Cnabla%5Ctimes%5Cmathbf%7BA%7D%5C%5C%0A%25%0A%26%3D%5Cmathbf%7BB%7D%5C%5C%0A%25%0A%5Cmathbf%7BE%7D'%26%3D-%5Cnabla%5Cvarphi'-%5Cpartial_t%5Cmathbf%7BA%7D'%5C%5C%0A%25%0A%26%3D-%5Cnabla%5Cvarphi%2B%5Cnabla%5Cleft(%5Cpartial_t%5Clambda%5Cright)-%5Cpartial_t%5Cmathbf%7BA%7D-%5Cpartial_t%5Cleft(%5Cnabla%5Clambda%5Cright)%20%5C%5C%0A%25%0A%26%3D-%5Cnabla%5Cvarphi-%5Cpartial_t%5Cmathbf%7BA%7D%5C%5C%0A%25%0A%26%3D%5Cmathbf%7BE%7D%0A%5Cend%7Bsplit%7D

即?(%5Cmathbf%7BA%7D%2C%5Cvarphi)?和 (%5Cmathbf%7BA%7D'%2C%5Cvarphi')?可以描述同一電磁場。這個性質(zhì)說明勢場方程存在一定的自由度,利用這一點可以將方程化為更簡單的形式。假設(shè),

%5Cnabla%5Ccdot%5Cmathbf%7BA%7D%2Bc%5E%7B-2%7D%5Cpartial_t%5Cvarphi%3Df(%5Cmathbf%7Br%7D%2Ct)%5Cneq0

規(guī)范變換后變?yōu)?/p>

%5Cnabla%5Ccdot%5Cmathbf%7BA%7D'%2Bc%5E%7B-2%7D%5Cpartial_t%5Cvarphi'%2Bc%5E%7B-2%7D%5Cpartial_t%5E2%5Clambda-%5Cnabla%5E2%5Clambda-f%3D0

對任意的?f,我們可以通過求解有源波動方程找到?%5Clambda,使其滿足

c%5E%7B-2%7D%5Cpartial_t%5E2%5Clambda-%5Cnabla%5E2%5Clambda%3Df

也就是說,我們總能通過規(guī)范變換,使得

%5Cnabla%5Ccdot%5Cmathbf%7BA%7D'%2Bc%5E%7B-2%7D%5Cpartial_t%5Cvarphi'%3D0

滿足上式要求的勢場被稱為洛倫茲規(guī)范。

于是,場方程化為形式上對稱的有源波動方程,

%5Cbegin%7Bcases%7D%0Ac%5E%7B-2%7D%5Cpartial_t%5E2%5Cvarphi-%5Cnabla%5E2%5Cvarphi%3D%5Crho%2F%5Cvarepsilon_0%5C%5C%0A%25%0Ac%5E%7B-2%7D%5Cpartial_t%5E2%5Cmathbf%7BA%7D-%5Cnabla%5E2%5Cmathbf%7BA%7D%3D%5Cmu_0%5C%2C%5Cmathbf%7Bj%7D%0A%5Cend%7Bcases%7D

定義達朗貝爾算符(D'Alembert Operator)

%5CBox%3Dc%5E%7B-2%7D%5Cpartial_t%5E2-%5Cnabla%5E2

定義四維矢勢和場源,

%5Cbegin%7Balign%7D%0AA_%5Cmu%26%3D%5Cleft(%5Cvarphi%2CA_x%2CA_y%2CA_z%5Cright)%5C%5C%0A%25%0Aj_%5Cmu%26%3D%5Cleft(c%5E2%5Crho%2Cj_x%2Cj_y%2Cj_z%5Cright)%0A%5Cend%7Balign%7D

于是場方程可以簡化為,

%7B%5CBox%7DA_%5Cmu%3D%5Cmu_%7B0%7Dj_%5Cmu

有源波動方程

利用傅里葉變換,

%5Cbegin%7Balign%7D%0AA_%5Cmu(%5Cmathbf%7Br%7D%2Ct)%26%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint%7BF_%5Cmu%7D(%5Cmathbf%7Br%7D%2C%5Comega)%5C%2C%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7D%5Comega%7Bt%7D%7D%5C%2C%5Cmathrm%7Bd%7D%5Comega%5Cnonumber%5C%5C%0A%25%0A%5Cmu_%7B0%7Dj_%5Cmu(%5Cmathbf%7Br%7D%2Ct)%26%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint%7BJ_%5Cmu%7D(%5Cmathbf%7Br%7D%2C%5Comega)%5C%2C%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7D%5Comega%7Bt%7D%7D%5C%2C%5Cmathrm%7Bd%7D%5Comega%5Cnonumber%0A%5Cend%7Balign%7D

可以得到頻域中的方程,

%5Cleft(%5Cnabla%5E2%2Bk%5E2%5Cright)F_%5Cmu%3D-J_%5Cmu

其中?k%20%3D%20%5Comega%20%2F%20c 。利用格林函數(shù)來求解,設(shè)?G_%5Comega(%5Cmathbf%7Br%7D%2C%5Cmathbf%7Br%7D')?滿足,

%5Cleft(%5Cnabla%5E2%2Bk%5E2%5Cright)G_%5Comega(%5Cmathbf%7Br%7D%2C%5Cmathbf%7Br%7D')%3D-%5Cdelta(%5Cmathbf%7Br%7D-%5Cmathbf%7Br%7D')

其中?%5Cmathbf%7Br%7D'?為源點,%5Cmathbf%7Br%7D?為場點。形式上可以寫出頻域中的通解,

F_%5Cmu(%5Cmathbf%7Br%7D%2C%5Comega)%3D%5Cint%7BG_%5Comega%7D(%5Cmathbf%7Br%7D%2C%5Cmathbf%7Br%7D')J_%5Cmu(%5Cmathbf%7Br%7D'%2C%5Comega)%5C%2C%5Cmathrm%7Bd%7D%5E3%7Br'%7D

于是問題變?yōu)榍蠼?G_%7B%5Comega%7D。對于無界空間的基本解,G_%7B%5Comega%7D?函數(shù)應與方向無關(guān),只與源點到場點的距離有關(guān),

%5Cleft(%5Cnabla%5E2%2Bk%5E2%5Cright)G_%7B%5Comega%7D(R)%3D-%5Cdelta(R)

其中?R%3D%7C%5Cmathbf%7Br%7D-%5Cmathbf%7Br%7D'%7C。當?%5Comega%20%3D%200%20?時,方程簡化為,

%5Cnabla%5E2%20G_0(R)%20%3D%20-%5Cdelta(R)

顯然這個方程描述的是點電荷在無界空間中產(chǎn)生的靜電勢,此時的解為

G_0(R)%3D%5Cfrac%7B1%7D%7B4%7B%5Cpi%7DR%7D

由此我們可以猜測,G_%7B%5Comega%7D?擁有如下形式,

G_%5Comega(R)%3D%5Cfrac%7Bg_%5Comega(R)%7D%7B4%7B%5Cpi%7DR%7D

其中?g_%5Comega?為待定函數(shù),在?%5Comega%20%3D%200%20?時,有?g_0(R)%20%3D%201。當?R%20%3E%200%20?時,我們在以?%5Cmathbf%7Br%7D'?為原點的球坐標中寫出方程,

%5Cfrac%7B1%7D%7BR%5E2%7D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%7BR%7D%7D%5Cleft(R%5E2%5Cfrac%7B%5Cpartial%7BG_%5Comega%7D%7D%7B%5Cpartial%7BR%7D%7D%5Cright)%2Bk%5E2%7BG_%5Comega%7D%3D0

化簡得到關(guān)于?g_%5Comega?的方程,

g_%5Comega''(R)%2Bk%5E2%7Bg_%5Comega%7D(R)%3D0

其解為,

g_%5Comega%5E%5Cpm(R)%3DC%5C%2C%5Cmathrm%7Be%7D%5E%7B%5Cpm%5Cmathrm%7Bi%7DkR%7D%3DC%5C%2C%5Cmathrm%7Be%7D%5E%7B%5Cpm%5Cmathrm%7Bi%7D%7B%5Comega%7DR%2Fc%7D

利用?g_0(R)%20%3D%201%20?可知?C%3D1%20,所以求得格林函數(shù)為,

G_%5Comega%5E%5Cpm(R)%3D%5Cfrac%7B%5Cmathrm%7Be%7D%5E%7B%5Cpm%5Cmathrm%7Bi%7D%7B%5Comega%7DR%2Fc%7D%7D%7B4%7B%5Cpi%7DR%7D

由此可以求出頻域中的兩個解,

F_%5Cmu%5E%5Cpm(%5Cmathbf%7Br%7D%2C%5Comega)%3D%5Cint%5Cfrac%7B%5Cmathrm%7Be%7D%5E%7B%5Cpm%5Cmathrm%7Bi%7D%7B%5Comega%7DR%2Fc%7D%7D%7B4%7B%5Cpi%7DR%7DJ_%5Cmu(%5Cmathbf%7Br%7D'%2C%5Comega)%5C%2C%5Cmathrm%7Bd%7D%5E3%7Br'%7D

再利用傅里葉變換,

%5Cbegin%7Bsplit%7D%0AA_%5Cmu%5E%5Cpm(%5Cmathbf%7Br%7D%2Ct)%26%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint%7BF_%5Cmu%5E%5Cpm%7D(%5Cmathbf%7Br%7D%2C%5Comega)%5C%2C%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7D%5Comega%7Bt%7D%7D%5C%2C%5Cmathrm%7Bd%7D%5Comega%5C%5C%0A%25%0A%26%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7D%5Comega%7Bt%7D%7D%5C%2C%5Cmathrm%7Bd%7D%5Comega%5Cint%5Cfrac%7B%5Cmathrm%7Be%7D%5E%7B%5Cpm%5Cmathrm%7Bi%7D%7B%5Comega%7DR%2Fc%7D%7D%7B4%7B%5Cpi%7DR%7DJ_%5Cmu(%5Cmathbf%7Br%7D'%2C%5Comega)%5C%2C%5Cmathrm%7Bd%7D%5E3%7Br'%7D%5C%5C%0A%25%0A%26%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint%5Cmathrm%7Bd%7D%5E3%7Br'%7D%5Cint%5Cfrac%7B%5Cmathrm%7Be%7D%5E%7B-%5Cmathrm%7Bi%7D%5Comega%5Cleft(t%7B%5Cmp%7DR%2Fc%5Cright)%7D%7D%7B4%7B%5Cpi%7DR%7DJ_%5Cmu(%5Cmathbf%7Br%7D'%2C%5Comega)%5C%2C%5Cmathrm%7Bd%7D%5Comega%5C%5C%0A%25%0A%26%3D%5Cfrac%7B1%7D%7B4%5Cpi%7D%5Cint%5Cfrac%7Bj_%5Cmu%5C!%5Cleft(%5Cmathbf%7Br%7D'%2Ct%7B%5Cmp%7DR%2Fc%5Cright)%7D%7BR%7D%5C%2C%5Cmathrm%7Bd%7D%5E3%7Br'%7D%0A%5Cend%7Bsplit%7D

Jefimenko 公式

上一節(jié)通過求解有源波動方程得到了數(shù)學上的兩個解,但在實際的物理場中,場源產(chǎn)生的影響會以光速傳播出去,在推遲了?R%2Fc?的時間后到達場點,即?t?時刻的場點由?t-R%2Fc?時刻的場源決定。所以物理解應該采用推遲勢(Retarded potential),

A_%5Cmu(%5Cmathbf%7Br%7D%2Ct)%3D%5Cfrac%7B1%7D%7B4%5Cpi%7D%5Cint%5Cfrac%7Bj_%5Cmu%5Cleft(%5Cmathbf%7Br%7D'%2Ct-R%2Fc%5Cright)%7D%7BR%7D%5C%2C%5Cmathrm%7Bd%7D%5E3%7Br'%7D

可以發(fā)現(xiàn)上式與靜電場、靜磁場的勢具有相似的形式。寫出電勢與磁矢勢,分別為,

%5Cbegin%7Balign%7D%0A%5Cvarphi(%5Cmathbf%7Br%7D%2Ct)%26%3D%5Cfrac%7B1%7D%7B4%5Cpi%5Cvarepsilon_0%7D%5Cint%5Cfrac%7B%5Crho_%5Ctext%7Bret%7D(%5Cmathbf%7Br%7D'%2Ct')%7D%7BR%7D%5C%2C%5Cmathrm%7Bd%7D%5E3%7Br'%7D%5C%5C%0A%25%0A%5Cmathbf%7BA%7D(%5Cmathbf%7Br%7D%2Ct)%26%3D%5Cfrac%7B%5Cmu_0%7D%7B4%5Cpi%7D%5Cint%5Cfrac%7B%5Cmathbf%7Bj%7D_%5Ctext%7Bret%7D(%5Cmathbf%7Br%7D'%2Ct')%7D%7BR%7D%5C%2C%5Cmathrm%7Bd%7D%5E3%7Br'%7D%0A%5Cend%7Balign%7D

其中下標?%20%20%20_%5Ctext%7Bret%7D?表示取推遲時間?t'%3Dt-R%2Fc。

接下來通過勢場求電磁場。計算如下幾項導數(shù),

%5Cnabla%5Crho_%5Ctext%7Bret%7D%3D(%5Cpartial_%7Bt'%7D%5Crho_%5Ctext%7Bret%7D)%5Ccdot%5Cnabla%7Bt'%7D%3D-%5Cfrac%7B%5Cpartial_%7Bt'%7D%5Crho_%5Ctext%7Bret%7D%7D%7Bc%7D%5C%2C%5Cmathbf%7Be%7D_R

%5Cpartial_t%5C%2C%5Cmathbf%7Bj%7D_%5Ctext%7Bret%7D%3D%5Cpartial_%7Bt'%7D%5C%2C%5Cmathbf%7Bj%7D_%5Ctext%7Bret%7D

%5Cbegin%7Bsplit%7D%0A%5Cnabla%5Ctimes%5Cmathbf%7Bj%7D_%5Ctext%7Bret%7D%26%3D%5Cepsilon%5E%7Bijk%7D%5C%2C%5Cmathbf%7Be%7D_i%5Cpartial_%7Bj%7D(j_k)_%5Ctext%7Bret%7D%5C%5C%0A%25%0A%26%3D%5Cepsilon%5E%7Bijk%7D%5C%2C%5Cmathbf%7Be%7D_i%5Cpartial_%7Bt'%7D(j_k)_%5Ctext%7Bret%7D%5C%2C%5Cpartial_%7Bj%7Dt'%5C%5C%0A%25%0A%26%3D%20%5Cfrac%7B%5Cpartial_%7Bt'%7D%5C%2C%5Cmathbf%7Bj%7D_%5Ctext%7Bret%7D%5Ctimes%5Cmathbf%7Be%7D_R%7D%7Bc%7D%0A%5Cend%7Bsplit%7D

電磁場為,

%5Cbegin%7Bsplit%7D%0A%5Cmathbf%7BE%7D(%5Cmathbf%7Br%7D%2Ct)%26%3D-%5Cnabla%5Cvarphi-%5Cpartial_t%5Cmathbf%7BA%7D%5C%5C%0A%25%0A%26%3D-%5Cfrac%7B1%7D%7B4%5Cpi%5Cvarepsilon_0%7D%5Cint%5Cmathrm%7Bd%7D%5E3%7Br'%7D%5Cleft%5B%5Crho_%7B%5Cmathrm%7Bret%7D%7D%5Cnabla%5C!%5Cleft(%5Cfrac1R%5Cright)%2B%5Cfrac%7B%5Cnabla%5Crho_%7B%5Cmathrm%7Bret%7D%7D%7D%7BR%7D%2B%5Cfrac%7B%5Cpartial_t%5C%2C%5Cmathbf%7Bj%7D_%7B%5Cmathrm%7Bret%7D%7D%7D%7Bc%5E%7B2%7DR%7D%5Cright%5D%5C%5C%0A%25%0A%26%3D%5Cfrac%7B1%7D%7B4%5Cpi%5Cvarepsilon_0%7D%5Cint%5Cmathrm%7Bd%7D%5E3%7Br'%7D%5Cleft(%5Cfrac%7B%5Crho_%7B%5Cmathrm%7Bret%7D%7D%7D%7BR%5E2%7D%5Cmathbf%7Be%7D_R%2B%5Cfrac%7B%5Cpartial_%7Bt'%7D%5Crho_%5Ctext%7Bret%7D%7D%7BcR%7D%5Cmathbf%7Be%7D_R-%5Cfrac%7B%5Cpartial_%7Bt'%7D%5C%2C%5Cmathbf%7Bj%7D_%7B%5Cmathrm%7Bret%7D%7D%7D%7Bc%5E2R%7D%5Cright)%5C%5C%0A%25%0A%5Cnewline%0A%25%0A%5Cmathbf%7BB%7D(%5Cmathbf%7Br%7D%2Ct)%26%3D%5Cnabla%5Ctimes%5Cmathbf%7BA%7D%5C%5C%0A%25%0A%26%3D%5Cfrac%7B%5Cmu_0%7D%7B4%5Cpi%7D%5Cint%5Cmathrm%7Bd%7D%5E3%7Br'%7D%5Cleft%5B%5Cnabla%5C!%5Cleft(%5Cfrac1R%5Cright)%5Ctimes%5Cmathbf%7Bj%7D_%7B%5Cmathrm%7Bret%7D%7D%2B%5Cfrac%7B%5Cnabla%5Ctimes%5Cmathbf%7Bj%7D_%7B%5Cmathrm%7Bret%7D%7D%7D%7BR%7D%5Cright%5D%5C%5C%0A%25%0A%26%3D%5Cfrac%7B%5Cmu_0%7D%7B4%5Cpi%7D%5Cint%5Cmathrm%7Bd%7D%5E3%7Br'%7D%5Cleft(%5Cfrac%7B%5Cmathbf%7Bj%7D_%7B%5Cmathrm%7Bret%7D%7D%5Ctimes%5Cmathbf%7Be%7D_R%7D%7BR%5E2%7D%2B%5Cfrac%7B%5Cpartial_%7Bt'%7D%5C%2C%5Cmathbf%7Bj%7D_%5Ctext%7Bret%7D%5Ctimes%5Cmathbf%7Be%7D_R%7D%7BcR%7D%5Cright)%0A%5Cend%7Bsplit%7D

此即 Jefimenko 公式,是 Coulomb 定律和 Biot-Savart 定律的含時推廣。

點電荷

設(shè)點電荷電量為 Q,運動軌跡為?%5Cmathbf%7Bs%7D(t'),速度為,

?%5Cmathbf%7Bv%7D(t')%3D%5Cfrac%7B%5Cmathrm%7Bd%7D%5C%2C%5Cmathbf%7Bs%7D%7D%7B%5Cmathrm%7Bd%7Dt'%7D

由此可以寫出場源的分布,

%5Cbegin%7Bcases%7D%0A%5Crho_%5Ctext%7Bret%7D(%5Cmathbf%7Br%7D'%2Ct')%3DQ%5C%2C%5Cdelta%5C!%5Cleft%5B%5Cmathbf%7Br%7D'-%5Cmathbf%7Bs%7D(t')%5Cright%5D%5C%5C%0A%25%0A%5Cmathbf%7Bj%7D_%7B%5Cmathrm%7Bret%7D%7D%20(%5Cmathbf%7Br%7D'%2Ct')%3DQ%5C%2C%5Cmathbf%7Bv%7D(t')%5C%2C%5Cdelta%5C!%5Cleft%5B%5Cmathbf%7Br%7D'-%5Cmathbf%7Bs%7D(t')%5Cright%5D%0A%5Cend%7Bcases%7D

設(shè)?%5Cmathbf%7By%7D(%5Cmathbf%7Br%7D')%3D%5Cmathbf%7Br%7D'-%5Cmathbf%7Bs%7D(t'),其單根為?%5Cmathbf%7Br%7D_0',即

%5Cmathbf%7By%7D(%5Cmathbf%7Br%7D_0')%3D%5Cmathbf%7Br%7D_0'-%5Cmathbf%7Bs%7D%5C!%5Cleft(t-%5Cleft%7C%5Cmathbf%7Br%7D-%5Cmathbf%7Br%7D_0'%5Cright%7C%2Fc%5Cright)%3D0

利用 delta 函數(shù)的性質(zhì),

%5Cdelta%5C!%5Cleft%5Bg(x)%5Cright%5D%3D%5Csum_k%5Cfrac%7B%5Cdelta(x-x_k)%7D%7B%5Cleft%7Cg'(x_k)%5Cright%7C%7D

其中?x_k?是?g(x)%3D0?的實單根。對于復合矢量場的情形,分母對應 Jaccobi 行列式在單根處的值,

%5Cdelta%5C!%5Cleft%5B%5Cmathbf%7By%7D(%5Cmathbf%7Br%7D')%5Cright%5D%3D%5Cfrac%7B%5Cdelta(%5Cmathbf%7Br%7D-%5Cmathbf%7Br%7D_0')%7D%7B%5Cleft%7C%5Cmathbf%7By%7D'(%5Cmathbf%7Br%7D_0')%5Cright%7C%7D

分母的矩陣元為,

%5Cbegin%7Bsplit%7D%0A%5Cfrac%7B%5Cpartial%7By_i%7D%7D%7B%5Cpartial%7Br'_j%7D%7D%5CBigg%7C_%7B%5Cmathbf%7Br%7D'%3D%5Cmathbf%7Br%7D_0'%7D%26%3D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%7Br'_j%7D%7D%5Cleft%5Br'_i-s_i(t')%5Cright%5D%5CBigg%7C_%7B%5Cmathbf%7Br%7D'%3D%5Cmathbf%7Br%7D_0'%7D%5C%5C%0A%25%0A%26%3D%5Cdelta_%7Bij%7D-%5Cleft(%5Cpartial_%7Bt'%7Ds_i%5Cright)%20%5Cfrac%7Br_j-r'_j%7D%7Bc%5Cleft%7C%5Cmathbf%7Br%7D-%5Cmathbf%7Br%7D'%5Cright%7C%7D%5CBigg%7C_%7B%5Cmathbf%7Br%7D'%3D%5Cmathbf%7Br%7D_0'%7D%5C%5C%0A%25%0A%26%3D%5Cdelta_%7Bij%7D-v_i(t')%5Cfrac%7Br_j-s_j(t')%7D%7Bc%7C%5Cmathbf%7Br%7D-%5Cmathbf%7Bs%7D(t')%7C%7D%5C%5C%0A%25%0A%26%3D%5Cdelta_%7Bij%7D-%5Cleft(%5Cfrac%7Bv_%7Bi%7DR_%7Bj%7D%7D%7BcR%7D%5Cright)_%5Ctext%7Bret%7D%0A%5Cend%7Bsplit%7D

將行列式記為?%5Ckappa,

%5Cbegin%7Bsplit%7D%0A%5Ckappa%5Cequiv%5Cleft%7C%5Cmathbf%7By%7D'(%5Cmathbf%7Br%7D_0')%5Cright%7C%26%3D1-%5Cdet%5Cleft(%5Cfrac%7Bv_%7Bi%7DR_%7Bj%7D%7D%7BcR%7D%5Cright)_%5Ctext%7Bret%7D%5C%5C%0A%25%0A%26%3D1-%5Cleft(%5Cfrac%7B%5Cmathbf%7Bv%7D%5Ccdot%5Cmathbf%7Be%7D_R%7D%7Bc%7D%5Cright)_%5Ctext%7Bret%7D%0A%5Cend%7Bsplit%7D

于是 delta 函數(shù)變?yōu)椋?/p>

%5Cdelta%5C!%5Cleft%5B%5Cmathbf%7Br%7D'-%5Cmathbf%7Bs%7D(t')%5Cright%5D%3D%5Cfrac%7B%5Cdelta(%5Cmathbf%7Br%7D-%5Cmathbf%7Br%7D_0')%7D%7B%5Ckappa%7D

代入推遲勢可得,

%5Cbegin%7Balign%7D%0A%5Cvarphi(%5Cmathbf%7Br%7D%2Ct)%26%3D%5Cfrac%7B1%7D%7B4%5Cpi%5Cvarepsilon_0%7D%5Cint%5Cfrac%7BQ%5C%2C%5Cdelta%5C!%5Cleft%5B%5Cmathbf%7Br%7D'-%5Cmathbf%7Bs%7D(t')%5Cright%5D%7D%7BR%7D%5C%2C%5Cmathrm%7Bd%7D%5E3%20r'%3D%5Cfrac%7B1%7D%7B4%5Cpi%5Cvarepsilon_0%7D%5Cleft(%5Cfrac%7BQ%7D%7B%5Ckappa%7BR%7D%7D%5Cright)_%5Ctext%7Bret%7D%5C%5C%0A%25%0A%5Cmathbf%7BA%7D(%5Cmathbf%7Br%7D%2Ct)%26%3D%5Cfrac%7B%5Cmu_0%7D%7B4%5Cpi%7D%5Cint%5Cfrac%7BQ%5C%2C%5Cmathbf%7Bv%7D(t')%5C%2C%5Cdelta%5C!%5Cleft%5B%5Cmathbf%7Br%7D'-%5Cmathbf%7Bs%7D(t')%5Cright%5D%7D%7BR%7D%5C%2C%5Cmathrm%7Bd%7D%5E3%7Br'%7D%3D%5Cfrac%7B%5Cmu_0%7D%7B4%5Cpi%7D%5Cleft(%5Cfrac%7BQ%5Cmathbf%7Bv%7D%7D%7B%5Ckappa%7BR%7D%7D%5Cright)_%5Ctext%7Bret%7D%0A%5Cend%7Balign%7D

這就是點電荷的 Liénard–Wiechert 勢。



麥克斯韋方程組的解的評論 (共 條)

分享到微博請遵守國家法律
宝山区| 清苑县| 孟津县| 临潭县| 高唐县| 两当县| 滦南县| 绥宁县| 和平区| 鹤壁市| 宜宾县| 女性| 商丘市| 安远县| 定兴县| 新疆| 商城县| 兴隆县| 中超| 武宁县| 丽水市| 文安县| 高雄县| 临澧县| 米泉市| 高雄市| 璧山县| 海原县| 孟津县| 黄梅县| 河南省| 洛隆县| 东阿县| 那曲县| 大竹县| 积石山| 临潭县| 古田县| 垣曲县| 宜春市| 麦盖提县|