高中數(shù)學(xué)題型及解題技巧,基礎(chǔ)不好的同學(xué)你趕超的機(jī)會就在這里!

以下是學(xué)長為大家收集的高中數(shù)學(xué)題型及解題技巧,希望能夠幫助到大家,在這個(gè)暑假趕超別人!記得一鍵三連呦!
篇1:高中數(shù)學(xué)題型及解題技巧
選擇題
選擇題是高中數(shù)學(xué)考試中的較基礎(chǔ)題型之一,分為多項(xiàng)選擇和單項(xiàng)選擇,一般是放在考查的第一部分,是考試重心,在習(xí)題練習(xí)中也占有較大比例.目前的高中數(shù)學(xué)選擇題傾向于單項(xiàng)選擇,表面看來降低了不少難度,但是選項(xiàng)中的相近答案極易給學(xué)生以誤導(dǎo).通常來說,選擇題的知識覆蓋面較廣,思維具有跳躍性,題目由淺到深,是檢測學(xué)生觀察、分析以及推理判斷能力的有效手段
.如何提高解答選擇題正確率,這就要求學(xué)生在練習(xí)中要充分利用題干中提供的各種信息,排除相似選項(xiàng)的干擾,一方面從題干出發(fā),探求結(jié)果,另一方面結(jié)合選項(xiàng),排除矛盾.我們可以采取排除法,概念分析法、圖形分析法和逆向思維法相結(jié)合,靈活運(yùn)用各種定理概念,做到發(fā)散思維,提高解題時(shí)效率.如題:設(shè)定義在R上的函數(shù)f(x)滿足f(x)?f(x+2)=13,若f(1)=2,則f(99)等于( ).該題共有四個(gè)答案,分別是13、2、132、213.我們可以通過這樣的步驟計(jì)算:(1)(x+2)=13f(x),f(x+4)=13f(x+2)=1313f(x)=f(x).(2)函數(shù)f(x)為周期函數(shù),且T=4,f(99)=f(4×24+3)=f(3)=13f(1)=132.在這里,我們利用題干中的相關(guān)條件,運(yùn)用函數(shù)的周期性這一概念,得到f(x)是周期為4的函數(shù).周期性是解答此題的關(guān)鍵,我們可以利用直接法算出.
填空題
選擇題在考試中放在選擇題后,題量不大,難度相對較低,但是分值也不高,主要是為了考查學(xué)生的基本技能和學(xué)生的基礎(chǔ)能力.學(xué)生能夠利用基礎(chǔ)知識解決和分析問題,在填空題中就不會失去太多分?jǐn)?shù).填空題與選擇題的差別在于:首先,填空題沒有選項(xiàng),在解答問題時(shí)缺乏提示,但是同時(shí)也排除了相似項(xiàng)的干擾;其次,填空題是在題干中抽出一部分內(nèi)容由學(xué)生填補(bǔ),結(jié)構(gòu)簡單、概念性強(qiáng);
此外,填空題不要求寫出運(yùn)算過程,是將結(jié)論直接填入空位中的求解題.一般來說,填空題的運(yùn)算量都不算大,學(xué)生可以基本采用數(shù)形結(jié)合法、等價(jià)轉(zhuǎn)換法、構(gòu)造法等,小題小做,提高正確率.如:在△ABC中,角A、B、C所對的邊分別為a、b、c,如果a、b、c成等差數(shù)列,則cosA+cosC1+cosAcosC=.解這道題有兩種方法,首先:我們可以通過取特殊值來計(jì)算,例如a=3,b=4,c=5,則cosA=45,cosC=0,cosA+cosC;1+cosAcosC=45;其次:利用角的特殊性,取特殊角A=B=C=π3,cosA=cosC=12,cosA+cosC1+cosAcosC=45.這就要求我們要熟練掌握三角形的概念以及特殊三角形直接的關(guān)系,才能在習(xí)題練習(xí)中節(jié)省時(shí)間,順利解答.
篇2:高中數(shù)學(xué)題型及解題技巧
靈活數(shù)學(xué)解題技巧的運(yùn)用目標(biāo)
所謂靈活的數(shù)學(xué)解題技巧就是在有效的學(xué)習(xí)時(shí)間內(nèi)讓學(xué)生的數(shù)學(xué)學(xué)習(xí)效果達(dá)到最大化.具體目標(biāo)是形成與數(shù)學(xué)課本內(nèi)容緊密鑲嵌的解題模式,改變學(xué)生慣有的學(xué)習(xí)方式,對待不同類型的題目要注意靈活運(yùn)用.熟練地運(yùn)用數(shù)學(xué)解題技巧不是一味地為了技巧而運(yùn)用技巧,而是在熟練掌握基本的課本知識的同時(shí),在逐漸的積累與實(shí)踐中掌握不同類型題目的學(xué)習(xí)規(guī)律,讓數(shù)學(xué)解題技巧成為學(xué)生的一種輔助工具
比如有的題目可以套用公式,但是同樣也可以按照規(guī)律進(jìn)行簡便運(yùn)算,數(shù)學(xué)解題技巧的運(yùn)用旨在培養(yǎng)學(xué)生獨(dú)立思考的邏輯思維能力和分析能力.不單單要讓學(xué)生學(xué)會應(yīng)對應(yīng)試教育模式,還要更加注重技巧對學(xué)生解題的幫助以及運(yùn)用數(shù)學(xué)思維去解決實(shí)際問題的能力.
審題技巧
審題是正確解題的關(guān)鍵,是對題目進(jìn)行分析、綜合、尋求解題思路和方法的過程,審題過程包括明確條件與目標(biāo)、分析條件與目標(biāo)的聯(lián)系、確定解題思路與方法三部分。(1)條件的分析,一是找出題目中明確告訴的已知條件,二是發(fā)現(xiàn)題目的隱含條件并加以揭示。目標(biāo)的分析,主要是明確要求什么或要證明什么;把復(fù)雜的目標(biāo)轉(zhuǎn)化為簡單的目標(biāo);
把抽象目標(biāo)轉(zhuǎn)化為具體的目標(biāo);把不易把握的目標(biāo)轉(zhuǎn)化為可把握的目標(biāo)。(2)分析條件與目標(biāo)的聯(lián)系。每個(gè)數(shù)學(xué)問題都是由若干條件與目標(biāo)組成的。解題者在閱讀題目的基礎(chǔ)上,需要找一找從條件到目標(biāo)缺少些什么?或從條件順推,或從目標(biāo)分析,或畫出關(guān)聯(lián)的草圖并把條件與目標(biāo)標(biāo)在圖上,找出它們的內(nèi)在聯(lián)系,以順利實(shí)現(xiàn)解題的目標(biāo)。(3)確定解題思路。一個(gè)題目的條件與目標(biāo)之間存在著一系列必然的聯(lián)系,這些聯(lián)系是由條件通向目標(biāo)的橋梁。用哪些聯(lián)系解題,需要根據(jù)這些聯(lián)系所遵循的數(shù)學(xué)原理確定。解題的實(shí)質(zhì)就是分析這些聯(lián)系與哪個(gè)數(shù)學(xué)原理相匹配。有些題目,這種聯(lián)系十分隱蔽,必須經(jīng)過認(rèn)真分析才能加以揭示;有些題目的匹配關(guān)系有多種,而這正是一個(gè)問題有多種解法的原因。
3數(shù)學(xué)的解題方法
一“慢”一“快”,相得益彰
有些考生只知道考場上一味地要快,結(jié)果題意未清,條件未全,便急于解答,豈不知欲速則不達(dá),結(jié)果是思維受阻或進(jìn)入死胡同,導(dǎo)致失敗。應(yīng)該說,審題要慢,解答要快。審題是整個(gè)解題過程的“基礎(chǔ)工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認(rèn)識,為形成解題思路提供全面可靠的依據(jù)。而思路一旦形成,則可盡量快速完成。
講求規(guī)范書寫,力爭既對又全
考試的又一個(gè)特點(diǎn)是以卷面為依據(jù)。這就要求不但會而且要對、對且全,全而規(guī)范。會而不對,令人惋惜;對而不全,得分不高;表述不規(guī)范、字跡不工整又是造成高考數(shù)學(xué)試卷非智力因素失分的一大方面。因?yàn)樽舟E潦草,會使閱卷老師的第一印象不良,進(jìn)而使閱卷老師認(rèn)為考生學(xué)習(xí)不認(rèn)真、基本功不過硬、“感情分” 也就相應(yīng)低了,此所謂心理學(xué)上的“光環(huán)效應(yīng)”?!皶鴮懸ふ砻婺艿梅帧敝v的也正是這個(gè)道理。
確保運(yùn)算準(zhǔn)確,立足一次成功
數(shù)學(xué)高考題的容量在120分鐘時(shí)間內(nèi)完成大小二十多個(gè)題,時(shí)間很緊張,不允許做大量細(xì)致的解后檢驗(yàn),所以要盡量準(zhǔn)確運(yùn)算(關(guān)鍵步驟,力求準(zhǔn)確,寧慢勿快),立足一次成功。解題速度是建立在解題準(zhǔn)確度基礎(chǔ)上,更何況數(shù)學(xué)題的中間數(shù)據(jù)常常不但從“數(shù)量”上,而且從“性質(zhì)”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩(wěn)扎穩(wěn)打,層層有據(jù),步步準(zhǔn)確,不能為追求速度而丟掉準(zhǔn)確度,甚至丟掉重要的得分步驟,假如速度與準(zhǔn)確不可兼得的說,就只好舍快求對了,因?yàn)榻獯鸩粚?,再快也無意義。
篇3:高中數(shù)學(xué)題型及解題技巧
數(shù)形結(jié)合法
數(shù)學(xué)是一門邏輯思維極強(qiáng)的學(xué)科,針對數(shù)學(xué)題目的復(fù)雜性、抽象性,繪制圖形進(jìn)行參照是正確解題的重要一步.這種方法一般用于函數(shù)圖像、幾何圖形、立體幾何等題目的求解中,數(shù)形結(jié)合法不僅對于解決數(shù)學(xué)大題至關(guān)重要,在選擇題領(lǐng)域也有廣泛的應(yīng)用.但要注意的是,在使用數(shù)形結(jié)合法時(shí),切勿將圖形畫錯(cuò)而影響題目的正確解答.
直接答題法
直接答題法要求我們直接從題目所給的條件出發(fā),運(yùn)用相關(guān)的概念、性質(zhì)和公式等知識,在層層推理與運(yùn)算的基礎(chǔ)上,得到題目的正確答案.直接答題法一般常用于涉及概念、性質(zhì)的考查或者運(yùn)算相對簡單選擇題與填空題.例如,在進(jìn)行“三角函數(shù)”的計(jì)算時(shí),我們習(xí)慣于使用數(shù)形結(jié)合法對其函數(shù)性質(zhì)進(jìn)行深入的研究,那么在做題時(shí)就難免思維定式,無論多么簡單的題目都進(jìn)行畫圖求解,這無形中就浪費(fèi)了很多的答題時(shí)間.當(dāng)進(jìn)行“三角函數(shù)”大小比較時(shí),比如正弦函數(shù)與余弦函數(shù)的比較過程中,我們往往可以采用直接法進(jìn)行一次性求解.
特殊代入法
特殊代入法指能夠根據(jù)題目的具體要求,靈活代入數(shù)值,確定圖形的特殊關(guān)系和位置來取代題目的正規(guī)解法,通過得出的特殊答案,對題目的選項(xiàng)進(jìn)行一一代入篩選,從而做出正確的判斷.這種方法常用于題目條件清晰的特殊函數(shù)、特殊圖形、特殊極值的解答中.例如,在進(jìn)行含有未知數(shù)的等差數(shù)列求和時(shí),除了按照等差數(shù)列的性質(zhì)將帶有未知數(shù)的公式列出來,還可以賦予未知數(shù)一個(gè)特殊的值,這個(gè)值一般為“1”或者是“0”,通過特殊值求出特殊的結(jié)果,最后進(jìn)行整個(gè)公式的代入求值.
篇4:超全整合高中數(shù)學(xué)的各類題型的解題技巧
高中數(shù)學(xué)的計(jì)算題的解題技巧
先易后難
就是先做簡單題,再做綜合題,應(yīng)根據(jù)自己的實(shí)際,果斷跳過啃不動(dòng)的題目,從易到難,也要注意認(rèn)真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。
先熟后生
高考數(shù)學(xué)書卷發(fā)下來后,通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處,對后者,不要驚慌失措,應(yīng)想到試題偏難對所有考生也難,通過這種暗示,確保情緒穩(wěn)定,對高考數(shù)學(xué)全卷整體把握之后,就可實(shí)施先熟后生的方法,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的數(shù)學(xué)計(jì)算。這樣,在拿下數(shù)學(xué)熟題的同時(shí),可以使思維流暢、超常發(fā)揮,達(dá)到拿下中高檔題目的目的。
先同后異
先做高考數(shù)學(xué)同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利于提高單位時(shí)間的效益。高考數(shù)學(xué)計(jì)算題一般要求較快地進(jìn)行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負(fù)擔(dān),保持有效精力,
高考數(shù)學(xué)解題過程要規(guī)范
高考數(shù)學(xué)計(jì)算題要保證既對且全,全而規(guī)范。應(yīng)為高考數(shù)學(xué)計(jì)算題表述不規(guī)范、字跡不工整又是造成高考數(shù)學(xué)試卷非智力因素失分的一大方面。
解決高考數(shù)學(xué)計(jì)算題,首先要全面調(diào)查題意,迅速接受概念,此為“面”;透過冗長敘述,抓住重點(diǎn)詞句,提出重點(diǎn)數(shù)據(jù),此為“點(diǎn)”;綜合聯(lián)系,提煉關(guān)系,依靠數(shù)學(xué)方法,建立數(shù)學(xué)模型,此為“線”,如此將應(yīng)用性問題轉(zhuǎn)化為純數(shù)學(xué)問題。當(dāng)然,高考數(shù)學(xué)計(jì)算題解題過程和結(jié)果都不能離開實(shí)際背景。
高中數(shù)學(xué)的選擇題的做題方法
代入法
高考數(shù)學(xué)的選擇題中大部分是數(shù)值類型的,為了節(jié)省時(shí)間,可以逆向去推算,把答案去帶入到題中去,逐一驗(yàn)證總會找到答案的,這就是代入法,是快速且有效的一種高考數(shù)學(xué)選擇題解題技巧。應(yīng)用代入法的前提是正常解題時(shí)間比代入法時(shí)間長。
數(shù)形結(jié)合
高考數(shù)學(xué)題最常用的就是數(shù)形結(jié)合法,由題目條件,作出符合題意的圖形或圖象,借助圖形或圖象的直觀性,經(jīng)過簡單的推理或計(jì)算,從而得出答案的方法。數(shù)形結(jié)合的好處就是直觀,甚至可以用量角尺直接量出結(jié)果來,也是數(shù)學(xué)選擇題最直觀的解題技巧之一。
估值選擇
有些高考數(shù)學(xué)選擇題,由于題目條件限制,沒有直接的條件進(jìn)行精準(zhǔn)的運(yùn)算和判斷,此時(shí)只能借助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法,這種方法的優(yōu)點(diǎn)就是快。
蒙
對于自己實(shí)在不會的高考數(shù)學(xué)選擇題,最常用的一招就是蒙了,但是蒙也是有技巧的,在蒙的時(shí)候如果是數(shù)值類型的,大多數(shù)要選擇“0”或者“1”,或者選擇數(shù)值最小的,這是高考數(shù)學(xué)選擇題比較常見的答案,選擇蒙是為了更好的節(jié)約時(shí)間用在下面的題目里面。
檢驗(yàn)法
對于具有一般性的數(shù)學(xué)選擇題問題,我們在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達(dá)到去偽存真的目的。
高考數(shù)學(xué)考試答題技巧及方法
根據(jù)平時(shí)的數(shù)學(xué)考試所用時(shí)間規(guī)律,考前瀏覽整張卷子,合理分配數(shù)學(xué)考試題目的答題時(shí)間,對于考試時(shí)間自己有一個(gè)合理的安排,會使考生們在答題時(shí)更有信心,根據(jù)考試剩余時(shí)間和自己的答題狀況有計(jì)劃的進(jìn)行答題。有技巧的答題,不要盲目答題而忽略考試時(shí)間,導(dǎo)致沒有足夠的時(shí)間檢查錯(cuò)誤。
在高考數(shù)學(xué)答題時(shí),大家按照數(shù)學(xué)試卷中題目的順序開始答題,因?yàn)樵诔鼍碜訒r(shí),老師們一般都是按照知識的難易順序安排的考題,由易到難,緩解同學(xué)們考試的壓力,使同學(xué)們漸漸的進(jìn)入考試狀態(tài)。但是當(dāng)遇到某道題一點(diǎn)思路都沒有或者完全不會的題時(shí),大家暫時(shí)跳過這一題,不要浪費(fèi)過多的時(shí)間,先答后面有把握拿到分的數(shù)學(xué)題,更后剩余的時(shí)間攻克數(shù)學(xué)難題,因?yàn)楦呖紨?shù)學(xué)考試時(shí)間有限,合理規(guī)劃時(shí)間的方法在高考中很實(shí)用。
高考數(shù)學(xué)答題時(shí)對于題目的時(shí)間利用方面,大家不要因小失大,在能保證拿得到的分?jǐn)?shù)的同時(shí),應(yīng)該去爭取更多的分。但是不能為了解決一道數(shù)學(xué)選擇題而白白浪費(fèi)10分鐘的答題時(shí)間。跟據(jù)高考數(shù)學(xué)題目的分值分配答題時(shí)間,分值大的題目就應(yīng)該占用更多的分值。
最后,在整張高考數(shù)學(xué)卷子發(fā)下來的時(shí)候,一定要聽從監(jiān)考老師的安排,檢查卷子的完整性,不要節(jié)省一兩分鐘的時(shí)間,如果有什么問題及時(shí)和老師反映,因?yàn)樵诟呖紨?shù)學(xué)考試時(shí),思維的完整性和連貫性很重要,如果中途發(fā)現(xiàn)出現(xiàn)了問題,既影響時(shí)間又會打斷答題的連貫思路,白白浪費(fèi)時(shí)間,高考是一場嚴(yán)肅的考試,所以考試要掌握一些高考應(yīng)試技巧及方法。
高考數(shù)學(xué)的7大學(xué)習(xí)方法
提高高中數(shù)學(xué)學(xué)習(xí)成績的關(guān)鍵:
初中學(xué)生學(xué)數(shù)學(xué),靠的是一個(gè)字:練!高中學(xué)生學(xué)數(shù)學(xué),靠的也是一個(gè)字:悟!
1.先看筆記后做作業(yè)
有的高一學(xué)生感到,老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對教師所講的內(nèi)容的理解,還沒能達(dá)到教師所要求的層次。
因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當(dāng)天的課堂筆記先看一看。能否堅(jiān)持如此,常常是好學(xué)生與差學(xué)生的區(qū)別。尤其練習(xí)題不太配套時(shí),作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實(shí),天長日久,就會造成極大損失。
2.做題之后加強(qiáng)反思
學(xué)生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。而是要運(yùn)用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思,總結(jié)一下自己的收獲。
要總結(jié)出:這是一道什么內(nèi)容的題,用的是什么方法。做到知識成片,問題成串。日久天長,構(gòu)建起一個(gè)內(nèi)容與方法的科學(xué)的網(wǎng)絡(luò)系統(tǒng)。俗話說:“有錢難買回頭看”。做完作業(yè),回頭細(xì)看,價(jià)值極大。這個(gè)回頭看,是學(xué)習(xí)過程中很重要的一個(gè)環(huán)節(jié)。
要看看自己做對了沒有;還有什么別的解法;題目處于知識體系中的什么位置;解法的本質(zhì)什么;題目中的已知與所求能否互換,能否進(jìn)行適當(dāng)增刪改進(jìn)。有了以上五個(gè)回頭看,學(xué)生的解題能力才能與日俱增。投入的時(shí)間雖少,效果卻很大??煞Q為事半功倍。
3.主動(dòng)復(fù)習(xí)和總結(jié)
進(jìn)行章節(jié)總結(jié)是非常重要的。初中時(shí)是教師替學(xué)生做總結(jié),做得細(xì)致,深刻,完整。高中是自己給自己做總結(jié),老師不但不給做,而且是講到哪,考到哪,不留復(fù)習(xí)時(shí)間,也沒有明確指出做總結(jié)的時(shí)間。
怎樣做章節(jié)總結(jié)呢?
①要把課本,筆記,區(qū)單元測驗(yàn)試卷,校周末測驗(yàn)試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標(biāo)記,標(biāo)明哪些是過一會兒要摘錄的。要養(yǎng)成一個(gè)習(xí)慣,在讀材料時(shí)隨時(shí)做標(biāo)記,告訴自己下次再讀這份材料時(shí)的閱讀重點(diǎn)。長期保持這個(gè)習(xí)慣,學(xué)生就能由博反約,把厚書讀成薄書。積累起自己的獨(dú)特的,也就是最適合自己進(jìn)行復(fù)習(xí)的材料。
②把本章節(jié)的內(nèi)容一分為二,一部分是基礎(chǔ)知識,一部分是典型問題。要把對技能的要求,列進(jìn)這兩部分中的一部分,不要遺漏。
③在基礎(chǔ)知識的疏理中,要羅列出所學(xué)的所有定義,定理,法則,公式。要做到三會兩用。即:會文字表述,會圖象符號表述,會推導(dǎo)證明。同時(shí)能從正反兩方面對其進(jìn)行應(yīng)用。
④把重要的,典型的各種問題進(jìn)行編隊(duì)。要盡量地把他們分類,找出它們之間的位置關(guān)系,總結(jié)出問題間的來龍去脈。就象我們欣賞一場團(tuán)體操表演,我們不能只盯住一個(gè)人看,看他從哪跑到哪,都做了些什么動(dòng)作。我們一定要居高臨下地看,看全場的結(jié)構(gòu)和變化。不然的話,陷入題海,徒勞無益。這一點(diǎn),是提高高中數(shù)學(xué)水平的關(guān)鍵所在。
⑤總結(jié)那些尚未歸類的問題,作為備注進(jìn)行補(bǔ)充說明。
⑥找一份適當(dāng)?shù)臏y驗(yàn)試卷,一定要計(jì)時(shí)測驗(yàn)。然后再對照答案,查漏補(bǔ)缺。
現(xiàn)在高中生的你們,無疑是要面對高考的,能否能在多變的情況下脫穎而出,就看你現(xiàn)在是什么樣的態(tài)度來面對了,所以,高一高二的學(xué)弟學(xué)妹們,努力學(xué)習(xí)才是關(guān)鍵。
4.重視改錯(cuò),錯(cuò)不重犯
一定要重視改錯(cuò)工作,做到錯(cuò)不再犯。初中數(shù)學(xué)教學(xué)采取的方法是,把各種可能的錯(cuò)誤,都告訴學(xué)生注意,只要有一人出過錯(cuò),就要提出來,讓全體同學(xué)引為借鑒。這叫“一人有病,全體吃藥?!?/p>
高中數(shù)學(xué)課沒有那么多時(shí)間,除了少數(shù)幾種典型錯(cuò),其它錯(cuò)誤,不能一一顧及。只能“誰有病,誰吃藥”。如果學(xué)生“有病”,而自己卻又忘記吃藥,那么沒人會一再地提醒他應(yīng)該注意些什么。如果能及時(shí)改錯(cuò),那么錯(cuò)誤就可能轉(zhuǎn)變?yōu)樨?cái)富,成為不再犯這種錯(cuò)誤的預(yù)防針。但是,如果不能及時(shí)改錯(cuò),這個(gè)錯(cuò)誤就將形成一處隱患,一處“地雷”,遲早要惹禍。
有的學(xué)生認(rèn)為,自己考試成績上不去,是因?yàn)樽约鹤鲱}太粗心。其實(shí),原因并非如此。打一個(gè)比方。比如說,學(xué)習(xí)開汽車。右腳下面,往左踩,是踩剎車。往右踩,是踩油門。其機(jī)械原理,設(shè)計(jì)原因,操作規(guī)程都可以講的清清楚楚。
5.積累資料隨時(shí)整理
要注意積累復(fù)習(xí)資料。把課堂筆記,練習(xí),區(qū)單元測驗(yàn),各種試卷,都分門別類按時(shí)間順序整理好。每讀一次,就在上面標(biāo)記出自己下次閱讀時(shí)的重點(diǎn)內(nèi)容。這樣,復(fù)習(xí)資料才能越讀越精,一目了然。
6.精挑慎選課外讀物
初中學(xué)生學(xué)數(shù)學(xué),如果不注意看課外讀物,一般地說,不會有什么影響。高中則大不相同。高中數(shù)學(xué)考的是學(xué)生解決新題的能力。
作為一名高中生,如果只是圍著自己的老師轉(zhuǎn),不論老師的水平有多高,必然都會存在著很大的局限性。因此,要想學(xué)好數(shù)學(xué),必須打開一扇門,看看外面的世界。
當(dāng)然,也不要自立門戶,另起爐灶。一旦脫離校內(nèi)教學(xué)和自己的老師的教學(xué)體系,也必將事倍功半。
7.配合老師主動(dòng)學(xué)習(xí)
高一新生的學(xué)習(xí)主動(dòng)性太差是一個(gè)普遍存在的問題。小學(xué)生,常常是完成了作業(yè)就可以盡情地歡樂。初中生基本上也是如此,聽話的孩子就能學(xué)習(xí)好。
高中則不然,作業(yè)雖多,但是只知做作業(yè)就絕對不夠;老師的話也不少,但是誰該干些什么了,老師并不一一具體指明。因此,高中新生必須提高自己學(xué)習(xí)的主動(dòng)性。準(zhǔn)備向?qū)淼拇髮W(xué)生的學(xué)習(xí)方法過渡。
篇5:各類題型解題技巧-政治試題
各類題型解題技巧-政治試題
1、選擇題的做法
(1)選擇題的構(gòu)成
隨著考試制度的改革,高考政治尤其是文科綜合政治部分選擇題,從類型上看大多以“組題”的形式出現(xiàn),即一個(gè)材料設(shè)計(jì)多個(gè)試題,最多可達(dá)到5個(gè)試題;從形式上看有兩部分構(gòu)成:題干、題肢;從內(nèi)容上看有三部分構(gòu)成:立意、情景、問題設(shè)置。
(2)具體做法
①抓住立意。每個(gè)選擇題只有一個(gè)立意,即一個(gè)中心思想。因而,看到試題后,認(rèn)真閱讀,并要很快地找到它的中心思想,最好用一句話的形式提取出立意。然后,再看題肢的設(shè)問,這樣就能很快地找到答案。當(dāng)然,對于簡單的試題來講,讀完也就應(yīng)該做完。
②找關(guān)鍵詞。一般來說。每個(gè)選擇題的關(guān)鍵詞大多在題干的最后一句話中,如“范圍關(guān)鍵詞”:經(jīng)濟(jì)學(xué)道理……、哲學(xué)道理……等。“內(nèi)容關(guān)鍵詞”:措施是……、制度是……等?!靶稳菰~關(guān)鍵詞”:根本……、主要……等。“動(dòng)詞關(guān)鍵詞”表明……、說明……、體現(xiàn)……等。立意和關(guān)鍵詞相結(jié)合,對做難度稍大的題目有較大的幫助。
③排查誤項(xiàng)。高考試題中有一部分是難度大的題目,甚至有些題肢的設(shè)置一時(shí)難以理解,在這種情況下,最好用排查法,先把明顯錯(cuò)誤的選項(xiàng)去掉,然后進(jìn)一步縮小范圍。
④不得已,猜。對于實(shí)在拿不準(zhǔn)的題目,千萬不要放棄猜答案的機(jī)會,可用猜測法。如果此題大多數(shù)人都不會,每一個(gè)人都有猜測得分的機(jī)遇。先用排除法排除能確認(rèn)的干擾項(xiàng),如果能排除兩個(gè),其余兩項(xiàng)肯定有一個(gè)正確答案,再隨意選其中一項(xiàng),這就意味著你答對的概率為50%,如果放棄就等于放棄了這50%的得分機(jī)遇。即使一個(gè)干擾項(xiàng)也不能排除仍不要放棄。四個(gè)選項(xiàng)中隨便選一個(gè),得分的機(jī)遇率仍有25%,若每名考生對自己不能肯定答對的題目都猜一下,那么機(jī)遇對每個(gè)人都是均等的,考試對所有的考生仍是公平的。
2.非選擇題解題的思路及步驟
(1)非選擇題的構(gòu)成
高考政治單科卷非選擇題一般包括簡答、辨析、論述三類;文科綜合政治部分非選擇題總稱為問答題;部分省市試卷還包括分析說明題、研究性學(xué)習(xí)試題等。
(2)具體做法
①認(rèn)真讀題,弄清題意,明確中心及分論點(diǎn),確定論據(jù)
在讀題時(shí),先要抓住試題提供的解題要求和條件,必須明確,答案不是憑空想出來的,而是從試題的文字中分析出來的。其次要明確中心,只有圍繞中心答題,才能與題意的口徑相符。再次將中心論點(diǎn)按題意分成幾個(gè)有機(jī)聯(lián)系的分論點(diǎn)。最后要確定用來分析說明中心論點(diǎn)或是分論點(diǎn)的根據(jù),包括政策根據(jù)、事實(shí)根據(jù)和數(shù)字根據(jù)。這是解題的鑰匙。
②歸類對號,落實(shí)課、節(jié)、框
試題雖然千變?nèi)f化,但都離不開用教材的'內(nèi)容來解答。讀題時(shí),必須判明答題要用教材哪些章、節(jié)、框的內(nèi)容。這樣才縮小了思考范圍,然后胸有成竹,根據(jù)題目的要求恰如其分地引用、組織某方面的知識。③規(guī)范化答題的一般步驟
第一步:先歸納題目觀點(diǎn),表明自己的態(tài)度。
第二步:講清有關(guān)的理論觀點(diǎn),即講清分析說明問題的理論依據(jù)。
第三步:運(yùn)用概念、原理、觀點(diǎn)分析問題。這是答案的主體,理論聯(lián)系實(shí)際,分析闡明問題的能力在這一步得到體現(xiàn)。這一步的層次由理論依據(jù)的層次而定。要遵循由遠(yuǎn)及近,由表及里。由共性到個(gè)性,由一般到特殊的原則,層層剖析。
第四步:聯(lián)系重大時(shí)事。主要是聯(lián)系黨的方針、政策和中心任務(wù);聯(lián)系一年來國內(nèi)國際發(fā)生的重大時(shí)事加以說明,主要是指黨代會、人代會通過的決議,重要領(lǐng)導(dǎo)人的重要講話等等。
第五步:用事實(shí)證明(包括史實(shí)、事實(shí)、數(shù)據(jù)等等)。答題不僅要有理,而且要有據(jù)。新教材特別注重由基本事實(shí)引出基本觀點(diǎn)。不論是正面論述還是駁斥題都要用“事實(shí)(實(shí)踐)證明”?!笆聦?shí)證明”往往和作用、意義、結(jié)論緊密相連。
第六步:反面論證。在正面論述之后,一般還應(yīng)聯(lián)系反面觀點(diǎn),指出觀點(diǎn)的錯(cuò)誤所在,以加深對正面的理解。這一步通常用“如果說……”“假如……”這樣的句式來展開。
第七步:表明態(tài)度或簡述自己的認(rèn)識體會。在論述題答案中這一步是不可少的。在教材中多處可以看到在闡述了一個(gè)觀點(diǎn)后對青年學(xué)生(我們)提出了相應(yīng)的要求。表態(tài)既要聯(lián)系實(shí)際,又要扣緊題意,不要空喊口號。④答案規(guī)范化
答題時(shí)一定要使用教材書面用語,而不能使用自己創(chuàng)造的語言、概念及社會、家庭流行的俗語。只有教材書面用語,才能做到表述規(guī)范、準(zhǔn)確、科學(xué)、簡潔,才能和閱卷老師溝通思想、交流信息、形成共識、減少誤解。
篇6:高中數(shù)學(xué)解題技巧方法
1、函數(shù)
函數(shù)題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
2.方程或不等式
如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法;
3.初等函數(shù)
面對含有參數(shù)的初等函數(shù)來說,在研究的時(shí)候應(yīng)該抓住參數(shù)沒有影響到的不變的性質(zhì)。如所過的定點(diǎn),二次函數(shù)的對稱軸或是……;
4.選擇與填空中的不等式
選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法;
5.參數(shù)的取值范圍
求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法;
6.恒成立問題
恒成立問題或是它的反面,可以轉(zhuǎn)化為最值問題,注意二次函數(shù)的應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復(fù)不遺漏;
7.圓錐曲線問題
圓錐曲線的題目優(yōu)先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點(diǎn)有關(guān),選擇設(shè)而不求點(diǎn)差法,與弦的中點(diǎn)無關(guān),選擇韋達(dá)定理公式法;使用韋達(dá)定理必須先考慮是否為二次及根的判別式;
8.曲線方程
求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設(shè)點(diǎn)、列式、化簡(注意去掉不符合條件的特殊點(diǎn));
9.離心率
求橢圓或是雙曲線的離心率,建立關(guān)于a、b、c之間的關(guān)系等式即可;
10.三角函數(shù)
三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍;
11.數(shù)列問題
數(shù)列的題目與和有關(guān),優(yōu)選和通公式,優(yōu)選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時(shí)候注意使用通項(xiàng)公式及前n項(xiàng)和公式,體會方程的思想;
12.立體幾何問題
立體幾何第一問如果是為建系服務(wù)的,一定用傳統(tǒng)做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數(shù)值的轉(zhuǎn)化;錐體體積的計(jì)算注意系數(shù)1/3,而三角形面積的計(jì)算注意系數(shù)1/2 ;與球有關(guān)的題目也不得不防,注意連接“心心距”創(chuàng)造直角三角形解題;
13.導(dǎo)數(shù)
導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時(shí)應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點(diǎn)是否在曲線上;
14.概率
概率的題目如果出解答題,應(yīng)該先設(shè)事件,然后寫出使用公式的理由,當(dāng)然要注意步驟的多少?zèng)Q定解答的詳略;如果有分布列,則概率和為1是檢驗(yàn)正確與否的重要途徑;
15.換元法
遇到復(fù)雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來完成;
16.二項(xiàng)分布
注意概率分布中的二項(xiàng)分布,二項(xiàng)式定理中的通項(xiàng)公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點(diǎn)能否取到需單獨(dú)驗(yàn)證,用點(diǎn)斜式或斜截式方程的時(shí)候考慮斜率是否存在等;
17.絕對值問題
絕對值問題優(yōu)先選擇去絕對值,去絕對值優(yōu)先選擇使用定義;
18.平移
與平移有關(guān)的,注意口訣“左加右減,上加下減”只用于函數(shù),沿向量平移一定要使用平移公式完成;
19.中心對稱
關(guān)于中心對稱問題,只需使用中點(diǎn)坐標(biāo)公式就可以,關(guān)于軸對稱問題,注意兩個(gè)等式的運(yùn)用:一是垂直,一是中點(diǎn)在對稱軸上。
篇7:高中數(shù)學(xué)解題技巧方法
1、“內(nèi)緊外松”,集中注意,消除焦慮怯場
集中注意力是考試成功的保證,一定的神經(jīng)亢奮和緊張,能加速神經(jīng)聯(lián)系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內(nèi)緊,但緊張程度過重,則會走向反面,形成怯場,產(chǎn)生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。
2、沉著應(yīng)戰(zhàn),確保旗開得勝,以利振奮精神
良好的開端是成功的一半,從考試的心理角度來說,這確實(shí)是很有道理的,拿到試題后,不要急于求成、立即下手解題,而應(yīng)通覽一遍整套試題,摸透題情,然后穩(wěn)操一兩個(gè)易題熟題,讓自己產(chǎn)生“旗開得勝”的快意,從而有一個(gè)良好的開端,以振奮精神,鼓舞信心,很快進(jìn)入最佳思維狀態(tài),即發(fā)揮心理學(xué)所謂的“門坎效應(yīng)”,之后做一題得一題,不斷產(chǎn)生正激勵(lì),穩(wěn)拿中低,見機(jī)攀高。
3、尋求中間環(huán)節(jié),挖掘隱含條件:
在些結(jié)構(gòu)復(fù)雜的綜合題,就其生成背景而論,大多是由若干比較簡單的基本題,經(jīng)過適當(dāng)組合抽去中間環(huán)節(jié)而構(gòu)成的。
因此,從題目的因果關(guān)系入手,尋求可能的中間環(huán)節(jié)和隱含條件,把原題分解成一組相互聯(lián)系的系列題,是實(shí)現(xiàn)復(fù)雜問題簡單化的一條重要途徑。
4、分類考察討論:
在些數(shù)學(xué)題,解題的復(fù)雜性,主要在于它的條件、結(jié)論(或問題)包含多種不易識別的可能情形。對于這類問題,選擇恰當(dāng)?shù)姆诸悩?biāo)準(zhǔn),把原題分解成一組并列的簡單題,有助于實(shí)現(xiàn)復(fù)雜問題簡單化。
5、簡單化已知條件:
有些數(shù)學(xué)題,條件比較抽象、復(fù)雜,不太容易入手。這時(shí),不妨簡化題中某些已知條件,甚至?xí)簳r(shí)撇開不顧,先考慮一個(gè)簡化問題。這樣簡單化了的問題,對于解答原題,常常能起到穿針引線的作用。
6、恰當(dāng)分解結(jié)論:
有些問題,解題的主要困難,來自結(jié)論的抽象概括,難以直接和條件聯(lián)系起來,這時(shí),不妨猜想一下,能否把結(jié)論分解為幾個(gè)比較簡單的部分,以便各個(gè)擊破,解出原題。
7、確保運(yùn)算準(zhǔn)確,立足一次成功
數(shù)學(xué)高考題的容量在120分鐘時(shí)間內(nèi)完成大小26個(gè)題,時(shí)間很緊張,不允許做大量細(xì)致的解后檢驗(yàn),所以要盡量準(zhǔn)確運(yùn)算(關(guān)鍵步驟,力求準(zhǔn)確,寧慢勿快),立足一次成功。解題速度是建立在解題準(zhǔn)確度基礎(chǔ)上,更何況數(shù)學(xué)題的中間數(shù)據(jù)常常不但從“數(shù)量”上,而且從“性質(zhì)”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩(wěn)扎穩(wěn)打,層層有據(jù),步步準(zhǔn)確,不能為追求速度而丟掉準(zhǔn)確度,甚至丟掉重要的得分步驟,假如速度與準(zhǔn)確不可兼得的說,就只好舍快求對了,因?yàn)榻獯鸩粚?,再快也無意義。
8、講求規(guī)范書寫,力爭既對又全
考試的又一個(gè)特點(diǎn)是以卷面為唯一依據(jù)。這就要求不但會而且要對、對且全,全而規(guī)范。會而不對,令人惋惜;對而不全,得分不高;表述不規(guī)范、字跡不工整又是造成高考數(shù)學(xué)試卷非智力因素失分的一大方面。因?yàn)樽舟E潦草,會使閱卷老師的第一印象不良,進(jìn)而使閱卷老師認(rèn)為考生學(xué)習(xí)不認(rèn)真、基本功不過硬、“感情分”也就相應(yīng)低了,此所謂心理學(xué)上的“光環(huán)效應(yīng)”?!皶鴮懸ふ?,卷面能得分”講的也正是這個(gè)道理。
篇8:高中數(shù)學(xué)解題技巧策略
在進(jìn)行高中數(shù)學(xué)的學(xué)習(xí)過程中,為了使回想、聯(lián)想、猜想的方向更明確,思路更加活潑,進(jìn)一步提高探索的成效,我們必須掌握一些解題的策略。
一切解題的策略的基本出發(fā)點(diǎn)在于“變換”,即把面臨的問題轉(zhuǎn)化為一道或幾道易于解答的新題,以通過對新題的考察,發(fā)現(xiàn)原題的解題思路,最終達(dá)到解決原題的目的。
基于這樣的認(rèn)識,常用的解題策略有:熟悉化、簡單化、直觀化、特殊化、一般化、整體化、間接化等。
一、熟悉化策略
所謂熟悉化策略,就是當(dāng)我們面臨的是一道以前沒有接觸過的陌生題目時(shí),要設(shè)法把它化為曾經(jīng)解過的或比較熟悉的題目,以便充分利用已有的知識、經(jīng)驗(yàn)或解題模式,順利地解出原題。
一般說來,對于題目的熟悉程度,取決于對題目自身結(jié)構(gòu)的認(rèn)識和理解。從結(jié)構(gòu)上來分析,任何一道解答題,都包含條件和結(jié)論(或問題)兩個(gè)方面。因此,要把陌生題轉(zhuǎn)化為熟悉題,可以在變換題目的條件、結(jié)論(或問題)以及它們的聯(lián)系方式上多下功夫。
二、簡單化策略
所謂簡單化策略,就是當(dāng)我們面臨的是一道結(jié)構(gòu)復(fù)雜、難以入手的題目時(shí),要設(shè)法把轉(zhuǎn)化為一道或幾道比較簡單、易于解答的新題,以便通過對新題的考察,啟迪解題思路,以簡馭繁,解出原題。
簡單化是熟悉化的補(bǔ)充和發(fā)揮。一般說來,我們對于簡單問題往往比較熟悉或容易熟悉。
因此,在實(shí)際解題時(shí),這兩種策略常常是結(jié)合在一起進(jìn)行的,只是著眼點(diǎn)有所不同而已。
解題中,實(shí)施簡單化策略的途徑是多方面的,常用的有:尋求中間環(huán)節(jié),分類考察討論,簡化已知條件,恰當(dāng)分解結(jié)論等。
三、直觀化策略:
所謂直觀化策略,就是當(dāng)我們面臨的`是一道內(nèi)容抽象,不易捉摸的題目時(shí),要設(shè)法把它轉(zhuǎn)化為形象鮮明、直觀具體的問題,以便憑借事物的形象把握題中所及的各對象之間的聯(lián)系,找到原題的解題思路。
四、特殊化策略
所謂特殊化策略,就是當(dāng)我們面臨的是一道難以入手的一般性題目時(shí),要注意從一般退到特殊,先考察包含在一般情形里的某些比較簡單的特殊問題,以便從特殊問題的研究中,拓寬解題思路,發(fā)現(xiàn)解答原題的方向或途徑。
五、一般化策略
所謂一般化策略,就是當(dāng)我們面臨的是一個(gè)計(jì)算比較復(fù)雜或內(nèi)在聯(lián)系不甚明顯的特殊問題時(shí),要設(shè)法把特殊問題一般化,找出一個(gè)能夠揭示事物本質(zhì)屬性的一般情形的方法、技巧或結(jié)果,順利解出原題。
篇9:高中數(shù)學(xué)解題技巧有哪些
高中數(shù)學(xué)19種答題方法
1.函數(shù)
函數(shù)題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
2.方程或不等式
如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法;
3.初等函數(shù)
面對含有參數(shù)的初等函數(shù)來說,在研究的時(shí)候應(yīng)該抓住參數(shù)沒有影響到的不變的性質(zhì)。如所過的定點(diǎn),二次函數(shù)的對稱軸或是……;
4.選擇與填空中的不等式
選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法;
5.參數(shù)的取值范圍
求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法;
6.恒成立問題
恒成立問題或是它的反面,可以轉(zhuǎn)化為最值問題,注意二次函數(shù)的應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復(fù)不遺漏;
7.圓錐曲線問題
圓錐曲線的題目優(yōu)先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點(diǎn)有關(guān),選擇設(shè)而不求點(diǎn)差法,與弦的中點(diǎn)無關(guān),選擇韋達(dá)定理公式法;使用韋達(dá)定理必須先考慮是否為二次及根的判別式;
8.曲線方程
求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設(shè)點(diǎn)、列式、化簡(注意去掉不符合條件的特殊點(diǎn));
9.離心率
求橢圓或是雙曲線的離心率,建立關(guān)于a、b、c之間的關(guān)系等式即可;
10.三角函數(shù)
三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍;
11.數(shù)列問題
數(shù)列的題目與和有關(guān),優(yōu)選和通公式,優(yōu)選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時(shí)候注意使用通項(xiàng)公式及前n項(xiàng)和公式,體會方程的思想;
12.立體幾何問題
立體幾何第一問如果是為建系服務(wù)的,一定用傳統(tǒng)做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數(shù)值的轉(zhuǎn)化;錐體體積的計(jì)算注意系數(shù)1/3,而三角形面積的計(jì)算注意系數(shù)1/2;與球有關(guān)的題目也不得不防,注意連接“心心距”創(chuàng)造直角三角形解題;
13.導(dǎo)數(shù)
導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時(shí)應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點(diǎn)是否在曲線上;
14.概率
概率的題目如果出解答題,應(yīng)該先設(shè)事件,然后寫出使用公式的理由,當(dāng)然要注意步驟的多少?zèng)Q定解答的詳略;如果有分布列,則概率和為1是檢驗(yàn)正確與否的重要途徑;
15.換元法
遇到復(fù)雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來完成;
16.二項(xiàng)分布
注意概率分布中的二項(xiàng)分布,二項(xiàng)式定理中的通項(xiàng)公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點(diǎn)能否取到需單獨(dú)驗(yàn)證,用點(diǎn)斜式或斜截式方程的時(shí)候考慮斜率是否存在等;
17.絕對值問題
絕對值問題優(yōu)先選擇去絕對值,去絕對值優(yōu)先選擇使用定義;
18.平移
與平移有關(guān)的,注意口訣“左加右減,上加下減”只用于函數(shù),沿向量平移一定要使用平移公式完成;
19.中心對稱
關(guān)于中心對稱問題,只需使用中點(diǎn)坐標(biāo)公式就可以,關(guān)于軸對稱問題,注意兩個(gè)等式的運(yùn)用:一是垂直,一是中點(diǎn)在對稱軸上。
高中數(shù)學(xué)6種解題思想
1.函數(shù)與方程思想
函數(shù)與方程的思想是中學(xué)數(shù)學(xué)最基本的思想。所謂函數(shù)的思想是指用運(yùn)動(dòng)變化的觀點(diǎn)去分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),再運(yùn)用函數(shù)的圖像與性質(zhì)去分析、解決相關(guān)的問題。
而所謂方程的思想是分析數(shù)學(xué)中的等量關(guān)系,去構(gòu)建方程或方程組,通過求解或利用方程的性質(zhì)去分析解決問題。
2.數(shù)形結(jié)合思想
數(shù)與形在一定的條件下可以轉(zhuǎn)化。如某些代數(shù)問題、三角問題往往有幾何背景,可以借助幾何特征去解決相關(guān)的代數(shù)三角問題;而某些幾何問題也往往可以通過數(shù)量的結(jié)構(gòu)特征用代數(shù)的方法去解決。因此數(shù)形結(jié)合的思想對問題的解決有舉足輕重的作用。
解題類型
①“由形化數(shù)”:就是借助所給的圖形,仔細(xì)觀察研究,提示出圖形中蘊(yùn)含的數(shù)量關(guān)系,反映幾何圖形內(nèi)在的屬性。
②“由數(shù)化形” :就是根據(jù)題設(shè)條件正確繪制相應(yīng)的圖形,使圖形能充分反映出它們相應(yīng)的數(shù)量關(guān)系,提示出數(shù)與式的本質(zhì)特征。
③“數(shù)形轉(zhuǎn)換” :就是根據(jù)“數(shù)”與“形”既對立,又統(tǒng)一的特征,觀察圖形的形狀,分析數(shù)與式的結(jié)構(gòu),引起聯(lián)想,適時(shí)將它們相互轉(zhuǎn)換,化抽象為直觀并提示隱含的數(shù)量關(guān)系。
3.分類討論思想
分類討論的思想之所以重要,原因一是因?yàn)樗倪壿嬓暂^強(qiáng),原因二是因?yàn)樗闹R點(diǎn)的涵蓋比較廣,原因三是因?yàn)樗膳囵B(yǎng)學(xué)生的分析和解決問題的能力。原因四是實(shí)際問題中常常需要分類討論各種可能性。
解決分類討論問題的關(guān)鍵是化整為零,在局部討論降低難度。
常見的類型
類型1:由數(shù)學(xué)概念引起的的討論,如實(shí)數(shù)、有理數(shù)、絕對值、點(diǎn)(直線、圓)與圓的位置關(guān)系等概念的分類討論;
類型2:由數(shù)學(xué)運(yùn)算引起的討論,如不等式兩邊同乘一個(gè)正數(shù)還是負(fù)數(shù)的問題;
類型3 :由性質(zhì)、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應(yīng)用引起的討論;
類型4:由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關(guān)問題引起的討論。
類型5:由某些字母系數(shù)對方程的影響造成的分類討論,如二次函數(shù)中字母系數(shù)對圖象的影響,二次項(xiàng)系數(shù)對圖象開口方向的影響,一次項(xiàng)系數(shù)對頂點(diǎn)坐標(biāo)的影響,常數(shù)項(xiàng)對截距的影響等。
分類討論思想是對數(shù)學(xué)對象進(jìn)行分類尋求解答的一種思想方法,其作用在于克服思維的片面性,全面考慮問題。分類的原則:分類不重不漏。
4.轉(zhuǎn)化與化歸思想
轉(zhuǎn)化與化歸是中學(xué)數(shù)學(xué)最基本的數(shù)學(xué)思想之一,是一切數(shù)學(xué)思想方法的核心。數(shù)形結(jié)合的思想體現(xiàn)了數(shù)與形的轉(zhuǎn)化;函數(shù)與方程的思想體現(xiàn)了函數(shù)、方程、不等式之間的相互轉(zhuǎn)化;分類討論思想體現(xiàn)了局部與整體的相互轉(zhuǎn)化,所以以上三種思想也是轉(zhuǎn)化與化歸思想的具體呈現(xiàn)。
轉(zhuǎn)化包括等價(jià)轉(zhuǎn)化和非等價(jià)轉(zhuǎn)化,等價(jià)轉(zhuǎn)化要求在轉(zhuǎn)化的過程中前因和后果是充分的也是必要的;不等價(jià)轉(zhuǎn)化就只有一種情況,因此結(jié)論要注意檢驗(yàn)、調(diào)整和補(bǔ)充。
轉(zhuǎn)化的原則是將不熟悉和難解的問題轉(zhuǎn)為熟知的、易解的和已經(jīng)解決的問題,將抽象的問題轉(zhuǎn)為具體的和直觀的問題;將復(fù)雜的轉(zhuǎn)為簡單的問題;將一般的轉(zhuǎn)為特殊的問題;將實(shí)際的問題轉(zhuǎn)為數(shù)學(xué)的問題等等使問題易于解決。
常見的轉(zhuǎn)化方法
①直接轉(zhuǎn)化法:把原問題直接轉(zhuǎn)化為基本定理、基本公式或基本圖形問題;
②換元法:運(yùn)用“換元”把式子轉(zhuǎn)化為有理式或使整式降冪等,把較復(fù)雜的函數(shù)、方程、不等式問題轉(zhuǎn)化為易于解決的基本問題;
③數(shù)形結(jié)合法:研究原問題中數(shù)量關(guān)系(解析式)與空間形式(圖形)關(guān)系,通過互相變換獲得轉(zhuǎn)化途徑;
④等價(jià)轉(zhuǎn)化法:把原問題轉(zhuǎn)化為一個(gè)易于解決的等價(jià)命題,達(dá)到化歸的目的;
⑤特殊化方法:把原問題的形式向特殊化形式轉(zhuǎn)化,并證明特殊化后的問題,使結(jié)論適合原問題;
⑥構(gòu)造法:“構(gòu)造”一個(gè)合適的數(shù)學(xué)模型,把問題變?yōu)橐子诮鉀Q的問題;
⑦坐標(biāo)法:以坐標(biāo)系為工具,用計(jì)算方法解決幾何問題也是轉(zhuǎn)化方法的一個(gè)重要途徑。
5.特殊與一般思想
用這種思想解選擇題有時(shí)特別有效,這是因?yàn)橐粋€(gè)命題在普遍意義上成立時(shí),在其特殊情況下也必然成立,根據(jù)這一點(diǎn),同學(xué)們可以直接確定選擇題中的正確選項(xiàng)。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。
6.極限思想
極限思想解決問題的一般步驟為:一、對于所求的未知量,先設(shè)法構(gòu)思一個(gè)與它有關(guān)的變量;二、確認(rèn)這變量通過無限過程的結(jié)果就是所求的未知量;三、構(gòu)造函數(shù)(數(shù)列)并利用極限計(jì)算法則得出結(jié)果或利用圖形的極限位置直接計(jì)算結(jié)果