最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊

復(fù)旦大學(xué)謝啟鴻老師高等代數(shù)在線習(xí)題課 思考題分析與解 ep.31

2021-10-21 13:22 作者:CharlesMa0606  | 我要投稿

本文內(nèi)容主要有關(guān)于線性映射及其運(yùn)算,在高代白皮書上對應(yīng)第4.2.1節(jié)

題目來自于復(fù)旦大學(xué)謝啟鴻教授在本站高等代數(shù)習(xí)題課的課后思考題,本文僅供學(xué)習(xí)交流

習(xí)題課視頻鏈接:復(fù)旦大學(xué)謝啟鴻高等代數(shù)習(xí)題課_嗶哩嗶哩_bilibili

本人解題水平有限,可能會(huì)有錯(cuò)誤,懇請斧正!

練習(xí)題1(17級高代期末考試第六大題)? 設(shè)M_n%5Cleft(K%5Cright)為數(shù)域K上的n階方陣全體構(gòu)成的線性空間,A%2CB%5Cin%20M_n%5Cleft(K%5Cright),M_n%5Cleft(K%5Cright)上的線性變換%5Cvarphi定義為%5Cvarphi%5Cleft(X%5Cright)%3DAXB.證明:%5Cvarphi是冪零線性變換的充要條件是A%2CB中至少有一個(gè)是冪零陣.

分析與解 ?注意到%5Cvarphi是冪零線性變換即%5Cexists%20m%5Cin%20N%5E%5Cast%2Cst.A%5EmXB%5Em%3DO%2C%5Cforall%20X%5Cin%20M_n%5Cleft(K%5Cright)

于是充分性顯然,我們只需要證明必要性.

考慮基礎(chǔ)矩陣,有:

%5Cleft(A%5EmE_%7Bij%7DB%5Em%5Cright)_%7Bkl%7D%3Da_%7Bki%7Db_%7Bjl%7D%3D0

從而a_%7Bij%7Db_%7Bkl%7D%3D0%2C%5Cforall%20i%2Cj%2Ck%2Cl,%E5%85%B6%E4%B8%ADa_%7Bij%7D%2Cb_%7Bkl%7D%E6%98%AFA%5Em%2CB%5Em%E7%9A%84%E7%AC%AC%5Cleft(i%2Cj%5Cright)%2C%5Cleft(k%2Cl%5Cright)%E5%85%83%E7%B4%A0.

%5Cexists%20a_%7Bij%7D%5Cneq0%0A,則b_%7Bkl%7D%3D0%2C%5Cforall%20k%2Cl%0A%0A,于是B%5Em%3DO.

所以A%2CB中至少有一個(gè)是冪零陣.

練習(xí)題2(17級高代I期末考試第七大題)? 設(shè)U%2CV%2CW均為數(shù)域上的非零線性空間,%5Cvarphi%3AV%5Crightarrow%20U%5Cpsi%3AU%5Crightarrow%20W是線性映射,滿足r%5Cleft(%5Cpsi%5Cvarphi%5Cright)%3Dr%5Cleft(%5Cvarphi%5Cright).證明:存在線性映射%5Cxi%3AW%5Crightarrow%20U,使得%5Cxi%5Cpsi%5Cvarphi%3D%5Cvarphi.

分析與解 ?不妨設(shè)r%5Cleft(%5Cpsi%5Cvarphi%5Cright)%3Dr%5Cleft(%5Cvarphi%5Cright)%3Dr,取Im%5Cvarphi的一組基%5C%7Be_1%2C%5Ccdots%2Ce_r%5C%7D,Im%5Cpsi%5Cvarphi的一組基%5C%7Bf_1%2C%5Ccdots%2Cf_r%5C%7D

任取%5Calpha%5Cin%20Im%5Cvarphi,不妨設(shè)為%5Calpha%3Dc_1e_1%2B%5Ccdots%2Bc_re_r

從而:

%5Cpsi%5Cleft(%5Calpha%5Cright)%3Dc_1%5Cpsi%5Cleft(e_1%5Cright)%2Bc_2%5Cpsi%5Cleft(e_2%5Cright)%2B%5Ccdots%2Bc_r%5Cpsi%5Cleft(e_r%5Cright)%3D%5Clambda_1f_1%2B%5Clambda_2f_2%2B%5Ccdots%2B%5Clambda_rf_r%5Cin%20Im%5Cpsi%5Cvarphi

于是%5Cpsi%5Cleft(e_1%5Cright)%2C%5Cpsi%5Cleft(e_2%5Cright)%2C%5Ccdots%2C%5Cpsi%5Cleft(e_r%5Cright)線性無關(guān),即它是Im%5Cpsi%5Cvarphi的一組基.

注意到e_1%2C%5Ccdots%2Ce_r%5Cin%20Im%5Cvarphi

從而存在r個(gè)線性無關(guān)的向量%5Cnu_%7Bi%7D%2Cst.%20e_%7Bi%7D%3D%5Cvarphi(%5Cnu_%7Bi%7D)(%5Cforall1%5Cleq%20i%5Cleq%20r)

我們構(gòu)造線性映射%5Cxi%3AW%5Crightarrow%20U如下,只需要考慮V上基向量的取值,有:

%5Cxi%5Cpsi%5Cvarphi%5Cleft(%5Cnu_i%5Cright)%3D%5Cxi%5Cpsi%5Cleft(e_i%5Cright)%3D%5Cvarphi%5Cleft(e_i%5Cright)%2C%5Cxi%5Cpsi%5Cvarphi%5Cleft(u_i%5Cright)%3D%5Cxi%5Cpsi%5Cleft(0%5Cright)%3D0.

于是存在線性映射%5Cxi%3AW%5Crightarrow%20U,使得%5Cxi%5Cpsi%5Cvarphi%3D%5Cvarphi.

練習(xí)題3? 設(shè)V是有理數(shù)域上的三維線性空間,%5CvarphiV上的線性變換并且滿足條件

%5Cvarphi%5Cleft(%5Calpha%5Cright)%3D%5Cbeta%2C%5Cvarphi%5Cleft(%5Cbeta%5Cright)%3D%5Cgamma%2C%5C%20%5C%20%5Cvarphi%5Cleft(%5Cgamma%5Cright)%3D%5Calpha%2B%5Cbeta

求證:若%5Calpha%5Cneq0,則%5Calpha%2C%5Cbeta%2C%5Cgamma是線性無關(guān)的向量.

分析與解 ?我們先設(shè)%5Calpha%2C%5Cbeta線性相關(guān),即%5Calpha%3Dk%5Cbeta%2Ck%5Cin%20Q,代入條件,有:

%5Cgamma%3Dk%5E2%5Calpha%2Ck%5E3%5Calpha%3D%5Calpha%2Bk%5Calpha

注意到于是得到方程k%5E3-k-1%3D0,由高代白皮書例5.45,因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=f(0)%2Cf(1)" alt="f(0)%2Cf(1)">是奇數(shù),所以原方程沒有有理根.從而必線性無關(guān).下設(shè)%5Cgamma%3Dk%5Calpha%2Bl%5Cbeta%2Ck%2Cl%5Cin%20Q,代入有:

%5Cvarphi%5Cleft(%5Cgamma%5Cright)%3Dk%5Cvarphi%5Cleft(%5Calpha%5Cright)%2Bl%5Cvarphi%5Cleft(%5Cbeta%5Cright)%3Dk%5Cbeta%2Bl%5Cleft(k%5Calpha%2Bl%5Cbeta%5Cright)%3Dkl%5Calpha%2B%5Cleft(k%2Bl%5E2%5Cright)%5Cbeta%3D%5Calpha%2B%5Cbeta

移項(xiàng),有:%5Cleft(kl-1%5Cright)%5Calpha%2B%5Cleft(k%2Bl%5E2-1%5Cright)%5Cbeta%3D0,注意到線性無關(guān),于是得到方程:

l%5E3-l%2B1%3D0

這個(gè)方程也沒有有理根,從而它們是線性無關(guān)的向量.

練習(xí)題4(14級高代I每周一題第7題) ?設(shè)A是有理數(shù)域Q上的4階方陣,%5Calpha_1%2C%5Calpha_2%2C%5Calpha_3%2C%5Calpha_4Q上的4維列向量,滿足:

A%5Calpha_1%3D%5Calpha_2%2CA%5Calpha_2%3D%5Calpha_3%2CA%5Calpha_3%3D%5Calpha_4%2CA%5Calpha_4%3D-%5Calpha_1-%5Calpha_2-%5Calpha_3-%5Calpha_4.

證明:若%5Calpha_1%5Cneq0,則%5C%7B%5Calpha_1%2C%5Calpha_2%2C%5Calpha_3%2C%5Calpha_4%5C%7D4維列向量空間Q%5E%7B4%7D的一組基.

分析與解 ?%5Calpha_1%2C%5Calpha_2線性相關(guān),不妨設(shè)%5Calpha_2%3Dk%5Calpha_1%2Ck%5Cin%20Q,代入得:

%5Calpha_3%3Dk%5E2%5Calpha_1%2C%5Calpha_4%3Dk%5E3%5Calpha_1%2CA%5Calpha_4%3Dk%5E4%5Calpha_1

因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=%5Calpha_1%5Cneq0" alt="%5Calpha_1%5Cneq0">從而得到方程組:k%5E4%2Bk%5E3%2Bk%5E2%2Bk%2B1%3D0,這個(gè)方程沒有有理根,于是%5Calpha_1%2C%5Calpha_2線性無關(guān).

%5Calpha_1%2C%5Calpha_2%2C%5Calpha_3線性相關(guān),則不妨設(shè)%5Calpha_3%3Dk%5Calpha_1%2Bl%5Calpha_2%2Ck%2Cl%5Cin%20Q,同樣代入得

%5Calpha_4%3DA%5Calpha_3%3Dkl%5Calpha_1%2B%5Cleft(k%2Bl%5Cright)%5Calpha_2%2CA%5Calpha_4%3Dk%5Cleft(k%2Bl%5Cright)%5Calpha_1%2B%5Cleft(2kl%2Bl%5E2%5Cright)%5Calpha_2

于是可以得到方程組:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7Dk%5E2%2Bk%2B2kl%2B1%3D0%5C%5Cl%5E2%2B2kl%2B1%2B2l%2Bk%3D0%5C%5C%5Cend%7Bmatrix%7D%5Cright.

整理得:3k%5E4%2B2k%5E3%2Bk%5E2%2B2k-1%3D0

這個(gè)方程沒有有理根,從而%5Calpha_1%2C%5Calpha_2%2C%5Calpha_3線性無關(guān).下設(shè)%5Calpha_4%3Dk%5Calpha_1%2Bl%5Calpha_2%2Br%5Calpha_3,同樣代入可以得到方程:

k%5E4%2Bk%5E3%2Bk%5E2%2Bk%2B1%3D0

這個(gè)方程也沒有有理根,從而%5C%7B%5Calpha_1%2C%5Calpha_2%2C%5Calpha_3%2C%5Calpha_4%5C%7D4維列向量空間Q%5E%7B4%7D的一組基.

推廣 ?設(shè)A是有理數(shù)域上的p-1階方陣(其中p為素?cái)?shù)),%5Calpha_1%2C%5Ccdots%2C%5Calpha_%7Bp-1%7DQ上的p-1維列向量,滿足:

A%5Calpha_1%3D%5Calpha_2%2C%5Ccdots%2CA%5Calpha_%7Bp-1%7D%3D-%5Calpha_1-%5Ccdots-%5Calpha_%7Bp-1%7D

則若%5Calpha_1%5Cneq0,則%5Calpha_1%2C%5Ccdots%2C%5Calpha_%7Bp-1%7D是有理數(shù)域上的p-1維列向量空間Q%5E%7Bp-1%7D的一組基.

參考資料

1.復(fù)旦大學(xué)謝啟鴻高等代數(shù)習(xí)題課_嗶哩嗶哩_bilibili

2.謝啟鴻高等代數(shù)博客(https://www.cnblogs.com/torsor/)



復(fù)旦大學(xué)謝啟鴻老師高等代數(shù)在線習(xí)題課 思考題分析與解 ep.31的評論 (共 條)

分享到微博請遵守國家法律
鹤庆县| 汉阴县| 根河市| 嘉荫县| 民丰县| 桂林市| 辰溪县| 南充市| 卢氏县| 黄浦区| 南充市| 阳朔县| 汶川县| 鄱阳县| 城固县| 剑阁县| 凌源市| 临漳县| 梧州市| 磐石市| 揭东县| 霍州市| 松溪县| 海宁市| 阳谷县| 阿尔山市| 盐池县| 邵阳县| 乳源| 仙居县| 嘉鱼县| 澄城县| 靖远县| 长葛市| 连平县| 绿春县| 乃东县| 敖汉旗| 建德市| 中西区| 五台县|