【發(fā)布】ChatGLM2-6B:性能大幅提升,8-32k上下文,推理提速42%
2023-06-25 19:03 作者:一起學(xué)chatGPT一起學(xué)ai | 我要投稿
為了更進(jìn)一步促進(jìn)大模型開源社區(qū)的發(fā)展,我們?cè)俅紊?jí) ChatGLM-6B,發(fā)布 ChatGLM2-6B 。在主要評(píng)估LLM模型中文能力的 C-Eval 榜單中,截至6月25日 ChatGLM2 模型以 71.1 的分?jǐn)?shù)位居 Rank 0 ,ChatGLM2-6B 模型以 51.7 的分?jǐn)?shù)位居 Rank 6,是榜單上排名最高的開源模型。
性能升級(jí)ChatGLM2-6B 是開源中英雙語(yǔ)對(duì)話模型 ChatGLM-6B 的第二代版本,在保留了初代模型對(duì)話流暢、部署門檻較低等眾多優(yōu)秀特性的基礎(chǔ)之上,ChatGLM2-6B 引入了如下新特性:更強(qiáng)大的性能:基于 ChatGLM 初代模型的開發(fā)經(jīng)驗(yàn),我們?nèi)嫔?jí)了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目標(biāo)函數(shù),經(jīng)過(guò)了 1.4T 中英標(biāo)識(shí)符的預(yù)訓(xùn)練與人類偏好對(duì)齊訓(xùn)練,評(píng)測(cè)結(jié)果顯示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等數(shù)據(jù)集上的性能取得了大幅度的提升,在同尺寸開源模型中具有較強(qiáng)的競(jìng)爭(zhēng)力。更長(zhǎng)的上下文:基于 FlashAttention 技術(shù),我們將基座模型的上下文長(zhǎng)度(Context Length)由 ChatGLM-6B 的 2K 擴(kuò)展到了 32K,并在對(duì)話階段使用 8K 的上下文長(zhǎng)度訓(xùn)練,允許更多輪次的對(duì)話。但當(dāng)前版本的 ChatGLM2-6B 對(duì)單輪超長(zhǎng)文檔的理解能力有限,我們會(huì)在后續(xù)迭代升級(jí)中著重進(jìn)行優(yōu)化。更高效的推理:基于 Multi-Query Attention 技術(shù),ChatGLM2-6B 有更高效的推理速度和更低的顯存占用:在官方的模型實(shí)現(xiàn)下,推理速度相比初代提升了 42%,INT4 量化下,6G 顯存支持的對(duì)話長(zhǎng)度由 1K 提升到了 8K。更開放的協(xié)議:ChatGLM2-6B 權(quán)重對(duì)學(xué)術(shù)研究完全開放,在獲得官方的書面許可后,亦允許商業(yè)使用。如果您發(fā)現(xiàn)我們的開源模型對(duì)您的業(yè)務(wù)有用,我們歡迎您對(duì)下一代模型 ChatGLM3 研發(fā)的捐贈(zèng)。
評(píng)測(cè)結(jié)果我們選取了部分中英文典型數(shù)據(jù)集進(jìn)行了評(píng)測(cè),以下為 ChatGLM2-6B 模型在 MMLU (英文)、C-Eval(中文)、GSM8K(數(shù)學(xué))、BBH(英文) 上的測(cè)評(píng)結(jié)果。
推理性能
ChatGLM2-6B 使用了 Multi-Query Attention,提高了生成速度。生成 2000 個(gè)字符的平均速度對(duì)比如下示例對(duì)比
相比于初代模型,ChatGLM2-6B 多個(gè)維度的能力都取得了提升,以下是一些對(duì)比示例。更多 ChatGLM2-6B 的可能,等待你來(lái)探索發(fā)現(xiàn)!數(shù)理邏輯知識(shí)推理