(x?4)/(x?5)?(x?5)/(x?6)=(x?7)/(x?8)?(x?8)/(x?9)
2023-02-21 06:55 作者:虛擬子彈數(shù)學課堂 | 我要投稿
題一、
解方程:(x?4)/(x?5)?(x?5)/(x?6)=(x?7)/(x?8)?(x?8)/(x?9)
分析題目
分析題目,分式方程,看似項次很多,其實,基本套路就是先對分子降次,然后再通分,逐步化解即可,據(jù)此分析,我們先對四個分式的分子,湊出分母的的因子,即得到,
(x?5)+1/(x?5)?(x?6)+1/(x?6)
=(x?8)+1/(x?8)?(x?9)+1/(x?9)
然后拆分分子后得到,
1+1/(x?5)?1?1/(x?6)
=1+1/(x?8)?1?1/(x?9)
等號兩邊的常數(shù)1都抵消掉了,整理得到,
1/(x?5)?1/(x?6)=1/(x?8)?1/(x?9)
此時我們直接通分得到,
((x?6))?((x?5))/((x?6))((x?5))
=((x?9))?((x?8))/((x?9))((x?8))
整理化簡兩個分子,X項次都抵消掉了,最后都剩下常數(shù)負1,
?1/((x?6))((x?5))=?1/((x?9))((x?8))
去分母后得到,
x2?17x+72=x2?11x+30
剛好X方項次抵消掉了,最后整理得到,
6x=42,
解得x=7
參考答案