就 一網(wǎng)友 所提命題 之證明


設(shè)
一或三象限切點(diǎn)與原點(diǎn)連線斜率k1
二或四象限切點(diǎn)與原點(diǎn)連線斜率k2
有
k1>0
k2=-b^4/(a^4k1)
即
S△AOB
=
b^4+a^4k12
/
2√((b^4+a^4k12)2/a2b2+(b2-a2)2k12)
=
1
/
2√(1/a2b2+(b2-a2)2k12/(b^4+a^4k12)2)
=
1
/
2√(1/a2b2+(b2-a2)2/(b^4/k1+a^4k1)2)
即
S△AOB
≥
1
/
2√(1/a2b2+(b2-a2)2/(4a^4b^4))
=
1
/
2√((b2+a2)2/(4a^4b^4))
=
1
/
2(b2+a2)/(2a2b2)
=
a2b2/(a2+b2)
且
S△AOB
≤
1
/
2√(1/a2b2)
=
ab/2
即
a2b2/(a2+b2)≤S△AOB≤ab/2
得證
設(shè)
x2/((a2+b2)/a2)+y2/((a2+b2)/b2)=1
上點(diǎn)與原點(diǎn)連線長(zhǎng)度d
有
S△APB
=
1/2·(d2-1)·2√(d2-1)/d2·ab
=
(d2-1)^(3/2)/d2·ab
設(shè)
t=d2-1
有
S△APB=ab·t^(3/2)/(t+1),b2/a2≤t≤a2/b2
即
S△APB
≥
ab
b3/a3
/
(a2+b2)/a2
=
b^4/(a2+b2)
且
S△APB
≤
ab
a3/b3
/
(a2+b2)/b2
=
a^4/(a2+b2)
即
b^4/(a2+b2)≤S△APB≤a^4/(a2+b2)
得證
標(biāo)簽: