最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

An Introduction to Modular Arithmetic

2023-09-27 11:59 作者:第一性原理  | 我要投稿

The best way to introduce modular arithmetic is to think of the face of a clock.


The numbers go from 1 to 12, but when you get to "13 o'clock",?it actually becomes 1 o'clock again

So?

13?becomes?1,?

14?becomes?2,?

and so on.

This can keep going, so when you get to "25?o'clock'', you are actually back round to where?1?o'clock is on the clock face (and also where?13?o'clock was too).

What we are saying is?

"13=1+?some multiple of?12", and?

"38=2+?some multiple of?12",?

or, alternatively, "the remainder when you divide?13?by?12?is?1" and "the remainder when you divide?38?by 12 is 2''. The way we write this mathematically is?

13≡1?mod?12,?

38≡2?mod?12

and so on. This is read as?

"13?is congruent to?1?mod (or modulo)?12" and?

"38?is congruent to?2?mod?12".

Congruence

key words:

mod?u?lar?/?m?dj?l??$??mɑ?d??l?r/?adjective?

con?gru?ent?/?k??ɡru?nt?$??kɑ??-/?adjective

congruence

re?main?der?/r??me?nd??$?-?r/?●○○?noun


An Introduction to Modular Arithmetic的評論 (共 條)

分享到微博請遵守國家法律
济宁市| 中方县| 隆尧县| 榆社县| 根河市| 永寿县| 普定县| 安徽省| 修文县| 大姚县| 廊坊市| 顺昌县| 阿拉善右旗| 本溪市| 台东县| 楚雄市| 江山市| 肇东市| 洪泽县| 松原市| 佛学| 桂东县| 上高县| 栾川县| 平遥县| 临澧县| 铜山县| 马边| 施秉县| 蓬莱市| 江门市| 钟祥市| 天峻县| 凤阳县| 定远县| 郑州市| 双桥区| 太和县| 忻州市| 贺州市| 泽普县|