2023Python數(shù)據(jù)分析名企內(nèi)訓(xùn)實(shí)戰(zhàn)班
一、描述統(tǒng)計(jì)
描述性統(tǒng)計(jì)是指運(yùn)用制表和分類,圖形以及計(jì)筠概括性數(shù)據(jù)來描述數(shù)據(jù)的集中趨勢(shì)、離散趨勢(shì)、偏度、峰度。
1、缺失值填充:常用方法:剔除法、均值法、最小鄰居法、比率回歸法、決策樹法。
2、正態(tài)性檢驗(yàn):很多統(tǒng)計(jì)方法都要求數(shù)值服從或近似服從正態(tài)分布,所以之前需要進(jìn)行正態(tài)性檢驗(yàn)。常用方法:非參數(shù)檢驗(yàn)的K-量檢驗(yàn)、P-P圖、Q-Q圖、W檢驗(yàn)、動(dòng)差法。
二、假設(shè)檢驗(yàn)
1、參數(shù)檢驗(yàn)
參數(shù)檢驗(yàn)是在已知總體分布的條件下(一股要求總體服從正態(tài)分布)對(duì)一些主要的參數(shù)(如均值、百分?jǐn)?shù)、方差、相關(guān)系數(shù)等)進(jìn)行的檢驗(yàn) 。
1)U驗(yàn)? 使用條件:當(dāng)樣本含量n較大時(shí),樣本值符合正態(tài)分布
2)T檢驗(yàn) 使用條件:當(dāng)樣本含量n較小時(shí),樣本值符合正態(tài)分布
A? 單樣本t檢驗(yàn):推斷該樣本來自的總體均數(shù)μ與已知的某一總體均數(shù)μ0 (常為理論值或標(biāo)準(zhǔn)值)有無差別;
B? 配對(duì)樣本t檢驗(yàn):當(dāng)總體均數(shù)未知時(shí),且兩個(gè)樣本可以配對(duì),同對(duì)中的兩者在可能會(huì)影響處理效果的各種條件方面扱為相似;
C 兩獨(dú)立樣本t檢驗(yàn):無法找到在各方面極為相似的兩樣本作配對(duì)比較時(shí)使用。
2、非參數(shù)檢驗(yàn)
非參數(shù)檢驗(yàn)則不考慮總體分布是否已知,常常也不是針對(duì)總體參數(shù),而是針對(duì)總體的某些一股性假設(shè)(如總體分布的位罝是否相同,總體分布是否正態(tài))進(jìn)行檢驗(yàn)。
適用情況:順序類型的數(shù)據(jù)資料,這類數(shù)據(jù)的分布形態(tài)一般是未知的。
A 雖然是連續(xù)數(shù)據(jù),但總體分布形態(tài)未知或者非正態(tài);
B 體分布雖然正態(tài),數(shù)據(jù)也是連續(xù)類型,但樣本容量極小,如10以下;
主要方法包括:卡方檢驗(yàn)、秩和檢驗(yàn)、二項(xiàng)檢驗(yàn)、游程檢驗(yàn)、K-量檢驗(yàn)等。
三、信度分析
檢査測(cè)量的可信度,例如調(diào)查問卷的真實(shí)性。
分類:
1、外在信度:不同時(shí)間測(cè)量時(shí)量表的一致性程度,常用方法重測(cè)信度
2、內(nèi)在信度;每個(gè)量表是否測(cè)量到單一的概念,同時(shí)組成兩表的內(nèi)在體項(xiàng)一致性如何,常用方法分半信度。
四、列聯(lián)表分析
用于分析離散變量或定型變量之間是否存在相關(guān)。
對(duì)于二維表,可進(jìn)行卡方檢驗(yàn),對(duì)于三維表,可作Mentel-Hanszel分層分析。
列聯(lián)表分析還包括配對(duì)計(jì)數(shù)資料的卡方檢驗(yàn)、行列均為順序變量的相關(guān)檢驗(yàn)。