最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網 會員登陸 & 注冊

Reinforcement Learning_Code_Simplest Actor-Critic

2023-04-12 21:59 作者:別叫我小紅  | 我要投稿

Following results and code are the implementation of simplest actor-critic in Gymnasium's Cart Pole environment. More actor-critic alorithms will be added in the learning of OpenAi Sunning Up tutorial.


RESULTS:

The simplest actor-critic algorithm takes too many steps to converge, it may be caused by large variance in sampling. If a baseline is reduced when updating policy, which refers to the trick used in?A2C, this phenomenon may be alleviated.

Visualizations of (i) changes in score?and?value approximation loss, and (ii) animation results.

Fig. 1. Changes in score and value approximation loss.
Fig. 2. Animation result?which got?a score of 357 points.


CODE:

NetWork.py


QACAgent.py


train_and_test.py


The above code are mainly based on?Lesson 7 of the David Silver's lecture [1],?Chapter 10 of Shiyu Zhao's Mathematical Foundation of Reinforcement Learning [2], and?Chapter 10 of Hands-on Reinforcement Learning?[3].


Reference

[1] https://www.davidsilver.uk/teaching/

[2] https://github.com/MathFoundationRL/Book-Mathmatical-Foundation-of-Reinforcement-Learning

[3]?https://hrl.boyuai.com/


Reinforcement Learning_Code_Simplest Actor-Critic的評論 (共 條)

分享到微博請遵守國家法律
库车县| 鄂伦春自治旗| 浪卡子县| 乌苏市| 青岛市| 镶黄旗| 武鸣县| 汕尾市| 临猗县| 津市市| 桐柏县| 浏阳市| 祁阳县| 江孜县| 松潘县| 蒙阴县| 临海市| 陇西县| 林口县| 枣庄市| 巨鹿县| 宜良县| 沈丘县| 晋中市| 屯昌县| 德阳市| 遵义县| 崇仁县| 微山县| 滦南县| 吉林市| 纳雍县| 额尔古纳市| 宝兴县| 呼和浩特市| 乐安县| 桂平市| 贵港市| 阿克苏市| 寿光市| 雷州市|