國家開放大學(xué)河南《復(fù)變函數(shù)》形考任務(wù)在線自測參考答案
“復(fù)變函數(shù)”形考任務(wù)5
(各章綜合練習(xí)書面作業(yè))
計算及證明題(每小題10分,共計100分)
數(shù)據(jù)來自:電大之家 ,可前往查看 diandahome.com/197215.html

復(fù)變函數(shù)的極限和連續(xù)性
函數(shù)的極限
定義
??設(shè)函數(shù)w=f(z)w=f(z)w=f(z)定義在z0z_0z0的去心鄰域0<∣z?z0∣<ρ0<|z-z_0|<\rho0<∣z?z0∣<ρ內(nèi)。如果有一確定的數(shù)AAA存在,對于任意給定的ε>0\varepsilon>0ε>0,相應(yīng)地必有一正數(shù)δ(ε)(o<δ≤ρ)\delta(\varepsilon)(o<\delta\leq\rho)δ(ε)(o<δ≤ρ),使得當(dāng)o<∣z?z0∣<δo<|z-z_0|<\deltao<∣z?z0∣<δ時有
??????????∣f(z)?A∣<ε|f(z)-A|<\varepsilon∣f(z)?A∣<ε
那么稱AAA為f(z)f(z)f(z)當(dāng)zzz趨向于z0z_0z0時的極限,記作lim?z?z0f(z)=A\lim\limits_{z-z_0}f(z)=Az?z0limf(z)=A,或記作當(dāng)z→z0z\to z_0z→z0時,f(z)→Af(z)\to Af(z)→A
定義中zzz趨向于z0z_0z0的方式是任意的
定理一
??設(shè)f(z)=u(x,y)+iv(x,y)f(z)=u(x,y)+iv(x,y)f(z)=u(x,y)+iv(x,y),A=u0+iv0A=u_0+iv_0A=u0+iv0,z0=x0+iy0z_0=x_0+iy_0z0=x0+iy0,那么lim?z?z0f(z)=A\lim\limits_{z-z_0}f(z)=Az?z0limf(z)=A的充要條件是
??????lim?y→y0x→x0u(x,y)=u0\lim\limits_{ ^{x \to x_0 }_{ ^{y \to y_0}}}u(x,y)=u_0y→y0x→x0limu(x,y)=u0,lim?y→y0x→x0v(x,y)=v0\lim\limits_{ ^{x \to x_0 }_{ ^{y \to y_0}}}v(x,y)=v_0y→y0x→x0limv(x,y)=v0
定理二
??如果lim?z→z0f(z)=A\lim\limits_{z\to z_0}f(z)=Az→z0limf(z)=A,lim?z→z0g(z)=B\lim\limits_{z\to z_0}g(z)=Bz→z0limg(z)=B,那么
lim?z→z0[f(z)±g(z)]=A±B\lim\limits_{z\to z_0}[f(z)\pm g(z)]=A\pm Bz→z0lim[f(z)±g(z)]=A±B
lim?z→z0f(z)g(z)=AB\lim\limits_{z\to z_0}f(z)g(z)=ABz→z0limf(z)g(z)=AB
lim?z→z0f(z)g(z)=AB\lim\limits_{z\to z_0}\frac{f(z)}{g(z)}=\frac{A}{B}z→z0limg(z)f(z)=BA?(B≠0)(B\neq 0)(B=0)
參考答案來源于:電大之家https://www.diandahome.com/197215.html