【TED ED 中英雙語】 P43
Can a black hole be destroyed
黑洞可以被摧毀嗎?

Black holes are among the most ?destructive objects in the universe.
Anything that gets too close to the ?central singularity of a black hole,
be it an asteroid, planet, or star,
risks being torn apart by its ?extreme gravitational field.
And if the approaching object happens ?to cross the black hole’s event horizon,
it’ll disappear and never re-emerge,
adding to the black hole’s mass and ?expanding its radius in the process.

黑洞是宇宙最具破壞性的物體之一,
任何太靠近黑洞中心奇點(diǎn)的物體,
無論是小行星,行星還是恒星,
都有被其巨大引力場摧毀的危險(xiǎn)。
如果接近黑洞的物體 恰好穿過黑洞的事件視界,
它將會(huì)消失,永不再出現(xiàn),
此過程中,黑洞質(zhì)量增加, 而且黑洞半徑擴(kuò)大。

There is nothing we could throw ?at a black hole
that would do the least bit of ?damage to it.
Even another black hole won’t destroy it–
the two will simply merge into a larger black hole,
releasing a bit of energy as gravitational waves in the process.

沒有任何扔向黑洞的東西
會(huì)對(duì)它造成一點(diǎn)損害
即使另一個(gè)黑洞也無法摧毀它——
這兩個(gè)黑洞只會(huì)合成一個(gè)更大的黑洞,
此過程中釋放出一點(diǎn)引力波能量。

By some accounts,
it’s possible that the universe may ?eventually consist entirely of black holes
in a very distant future.
And yet, there may be a way to destroy, ?or “evaporate,” these objects after all.
If the theory is true,
all we need to do is to wait.

理論證明,
在遙遠(yuǎn)的將來,
黑洞會(huì)組成整個(gè)宇宙。
然而有一種方法 可能可以摧毀或“蒸發(fā)”這些黑洞。
如果那個(gè)理論可靠,
我們只需要等待。

In 1974,
Stephen Hawking theorized a process
that could lead a black hole ?to gradually lose mass.
Hawking radiation, as it came to be known,
is based on a well-established phenomenon called quantum fluctuations of the vacuum.
According to quantum mechanics,
a given point in spacetime fluctuates ?between multiple possible energy states.
These fluctuations are driven by the ?continuous creation and destruction
of virtual particle pairs,
which consist of a particle and its ?oppositely charged antiparticle.
Normally, the two collide and annihilate ?each other shortly after appearing,
preserving the total energy.

1974年,
斯蒂芬·霍金提出
一個(gè)可能導(dǎo)致黑洞 逐漸失去質(zhì)量的過程:
霍金輻射學(xué)說。
這個(gè)理論基于一種 真空量子波動(dòng)的已知現(xiàn)象。
根據(jù)量子力學(xué),
時(shí)空中的一個(gè)點(diǎn)在多個(gè) 可能的能量狀態(tài)之間波動(dòng)。
這些波動(dòng)是由虛粒子對(duì)的
不斷產(chǎn)生和湮滅所造成的,
虛粒子對(duì)由粒子 和帶相反電荷的反粒子組成。
通常兩者出現(xiàn)后不久 就會(huì)相互碰撞和湮滅,
總能量不變。

But what happens when they appear just at the edge of a black hole’s event horizon?
If they’re positioned just right,
one of the particles could escape the ?black hole’s pull
while its counterpart falls in.
It would then annihilate another ?oppositely charged particle
within the event horizon ?of the black hole,
reducing the black hole’s mass.
Meanwhile, to an outside observer,
it would look like the black hole ?had emitted the escaped particle.
Thus, unless a black hole continues ?to absorb additional matter and energy,
it’ll evaporate particle by particle, ?at an excruciatingly slow rate.

但它們出現(xiàn)在黑洞 事件視界時(shí)會(huì)發(fā)生什么呢?
如果它們恰好位于視界邊緣,
一個(gè)粒子可能會(huì)逃脫黑洞引力,
而另一個(gè)墜入黑洞。
黑洞視界邊緣內(nèi)的粒子
會(huì)中和另一個(gè)帶相反電荷的粒子,
從而減少黑洞的質(zhì)量。
對(duì)外部觀察者來說,
就好像黑洞發(fā)射了逃逸粒子。
因此,除非黑洞繼續(xù) 吸收外部物質(zhì)和能量,
它將以極其緩慢的速度蒸發(fā)粒子。

How slow?
A branch of physics, called black hole thermodynamics, gives us an answer.
When everyday objects or celestial bodies release energy to their environment,
we perceive that as heat,
and can use their energy emission to ?measure their tempe******.
Black hole thermodynamics
suggests that we can similarly define the “tempe******” of a black hole.
It theorizes that the more massive the ?black hole,
the lower its tempe******.
The universe’s largest black holes
would give off tempe******s of the order of 10?to the -17th power Kelvin,
very close to absolute zero.

有多慢呢?
黑洞熱力學(xué)給出了答案。
日常物體或天體 向周圍環(huán)境釋放能量,
我們把其感受為熱量,
并且根據(jù)釋放的能量 來測量它們的溫度。
黑洞熱力學(xué)認(rèn)為,
我們也可以類似地 定義黑洞的“溫度”。
該理論認(rèn)為,黑洞質(zhì)量越大,
其溫度越低。
宇宙最大的黑洞,
其溫度為10的負(fù)17次方開爾文,
非常接近絕對(duì)零度。

Meanwhile, one with the mass of the asteroid Vesta
would have a tempe****** close to 200?degrees Celsius,
thus releasing a lot of energy ?in the form of Hawking Radiation
to the cold outside environment.
The smaller the black hole,
the hotter it seems to be burning–
and the sooner it’ll burn out completely.

而一個(gè)與灶神星 同質(zhì)量的黑洞的溫度,
則接近200攝氏度,
它以霍金輻射的形式,
向寒冷的外部環(huán)境釋放大量能量。
黑洞越小,
其燃燒得更加熾熱——
而且很快就會(huì)燒光。

Just how soon?
Well, don’t hold your breath.
First of all, most black holes accrete, ?or absorb matter and energy,
more quickly than they emit Hawking radiation.
But even if a black hole with the ?mass of our Sun stopped accreting,
it would take 10?to the 67th power years–
many many magnitudes longer than the current age of the Universe—
to fully evaporate.

到底多快呢?
好吧,別期望太高。
首先,多數(shù)黑洞聚集 或吸收物質(zhì)和能量的速度
遠(yuǎn)遠(yuǎn)大于發(fā)出霍金輻射的速度,
即使一個(gè)與太陽質(zhì)量 相同的黑洞停止了聚集物質(zhì)能量,
它也需要10的67次方年——
也就是比現(xiàn)在宇宙的年齡更長的時(shí)間——
才能完全消失。

When a black hole reaches ?about 230?metric tons,
it’ll have only one more second to live.
In that final second,
its event horizon becomes ?increasingly tiny,
until finally releasing all of its energy ?back into the universe.
And while Hawking radiation has never ?been directly observed,
some scientists believe that certain gamma ray flashes detected in the sky
are actually traces of the last moments
of small, primordial black holes formed ?at the dawn of time.

當(dāng)黑洞達(dá)到230公噸左右時(shí),
它只會(huì)再生存一秒。
在最后一秒,
它的事件視界變得越來越小,
直到最終將所有能量釋放回宇宙。
雖然人們從未直接觀察到霍金輻射,
但一些科學(xué)家認(rèn)為,天空中 探測到的某些伽馬射線閃光
就是是遠(yuǎn)古時(shí)期形成的、
小的原始黑洞最后一刻的痕跡。

Eventually, in an almost inconceivably distant future,
the universe may be left ?as a cold and dark place.
But if Stephen Hawking was right,
before that happens,
the normally terrifying and otherwise impervious black holes
will end their existence in a final ?blaze of glory.

最終,在未知的遙遠(yuǎn)未來,
宇宙會(huì)成為冰冷、黑暗之所。
但如果霍金輻射的理論是正確的,
在那發(fā)生之前,
可怕而神秘莫測的黑洞,
將在最后的榮耀之火中湮滅。