最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

【數(shù)學(xué)分析】一道簡(jiǎn)單數(shù)列極限的多種解法

2023-04-11 23:00 作者:Ice_koucha  | 我要投稿

前言:今天突然心血來(lái)潮打算開(kāi)這個(gè)坑,大概是記錄自己一些想法和當(dāng)做復(fù)習(xí)筆記的作用,之前已經(jīng)做了兩個(gè)數(shù)學(xué)的視頻,但是做視頻有點(diǎn)累,而且不蹭熱點(diǎn)就沒(méi)什么再生數(shù)。所以這次嘗試用專欄的形式發(fā)出來(lái),隨便使用一下B站專欄的公式編輯功能,更新完全隨緣,既然是第一題,那么就選一個(gè)非常簡(jiǎn)單的問(wèn)題來(lái)講解,(會(huì)用四種不同的方法來(lái)解答)話不多說(shuō),我們開(kāi)始吧(為獲得最佳閱讀體驗(yàn),建議在PC網(wǎng)頁(yè)端瀏覽)。

題目:設(shè)a_%7Bn%7D%3D%5Cfrac%7B1%7D%7Bn%2B1%7D%2B%5Cfrac%7B1%7D%7Bn%2B2%7D%2B%5Ccdots%2B%5Cfrac%7B1%7D%7Bn%2Bn%7D,求%20%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%20a_%7Bn%7D%20

分析:為了嚴(yán)謹(jǐn)起見(jiàn),我們先證明a_%7Bn%7D%20收斂.

先作差,有a_%7Bn%2B1%7D%20-a_%7Bn%7D%3D(%5Cfrac%7B1%7D%7Bn%2B2%7D%20%2B%5Cfrac%7B1%7D%7Bn%2B3%7D%2B%5Ccdots%2B%5Cfrac%7B1%7D%7B2n%2B2%7D)-(%5Cfrac%7B1%7D%7Bn%2B1%7D%2B%5Cfrac%7B1%7D%7Bn%2B2%7D%2B%5Ccdots%2B%5Cfrac%7B1%7D%7Bn%2Bn%7D)%0A

? ? ? ? ? ? ? ? ? ?%3D%5Cfrac%7B1%7D%7B2n%2B1%7D-%20%5Cfrac%7B1%7D%7B2n%2B2%7D%3E0

因此a_%7Bn%7D%20單調(diào)遞增.

又因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=a_%7Bn%7D%20%3C%5Cfrac%7Bn%7D%7Bn%2B1%7D%20%20%3C1" alt="a_%7Bn%7D%20%3C%5Cfrac%7Bn%7D%7Bn%2B1%7D%20%20%3C1">,所以a_%7Bn%7D%20單調(diào)遞增且有上界,由單調(diào)有界原則,a_%7Bn%7D%20收斂.

解法一(利用Riemann積分的定義)

最簡(jiǎn)單直接的做法,沒(méi)什么好說(shuō)的

%5Clim_%7Bn%5Cto%E2%88%9E%7D%20a_%7Bn%7D%20%20%3D%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5En%20%5Cfrac%7B1%7D%7B1%2B%5Cfrac%7Bi%7D%7Bn%7D%20%7D%20%7D%7Bn%7D%20%3D%5Cint_%7B0%7D%5E%7B1%7D%20%5Cfrac%7B1%7D%7Bx%2B1%7Ddx%3Dln2%20

解法二(利用Euler常數(shù))

先給出下列命題:

①對(duì)數(shù)不等式:%5Cfrac%7Bx%7D%7B1%2Bx%7D%5Cleq%20%20ln(x%2B1)%5Cleq%20x?(當(dāng)x%3E-1時(shí))

證明:令f(x)%3Dx-ln(x%2B1),注意到f(0)%3D0,由Lagrange中值定理得,

f(x)%3D%5Cfrac%7B%5Cxi%20x%7D%7B%5Cxi%2B1%7D%20%3E0,其中%5Cxi%20介于0x之間,不等式右端得證.對(duì)于左端使用類似的方法也可證出.當(dāng)且僅當(dāng)x%3D0時(shí)兩邊取等號(hào).

x%3D%5Cfrac%7B1%7D%7Bn%7D%20,得%5Cfrac%7B1%7D%7Bn%2B1%7D%20%3Cln(1%2B%5Cfrac%7B1%7D%7Bn%7D)%3C%5Cfrac%7B1%7D%7Bn%7D%20,其中n為正整數(shù)

②數(shù)列b_%7Bn%7D%3D1%2B%5Cfrac%7B1%7D%7B2%7D%20%2B%5Cfrac%7B1%7D%7B3%7D%20%2B%5Ccdots%2B%5Cfrac%7B1%7D%7Bn%7D%20-lnn收斂

證明:作差,得

b_%7Bn%2B1%7D-b_%7Bn%7D%20%20%3D%5Cfrac%7B1%7D%7Bn%2B1%7D%20-ln(n%2B1)-lnn

? ? ? ? ? ? ? ? ? ??%3D%5Cfrac%7B1%7D%7Bn%2B1%7D-ln%20(1%2B%5Cfrac%7B1%7D%7Bn%7D%20)

由①得,%5Cfrac%7B1%7D%7Bn%2B1%7D-ln%20(1%2B%5Cfrac%7B1%7D%7Bn%7D%20)%3C0,所以b_%7Bn%7D%20單調(diào)遞減。

同時(shí),

b_%7Bn%7D%20%3Eln(1%2B1)%2Bln(1%2B%5Cfrac%7B1%7D%7B2%7D%20)%2Bln(1%2B%5Cfrac%7B1%7D%7B3%7D%20)%2B%5Ccdots%2Bln(1%2B%5Cfrac%7B1%7D%7Bn%7D%20)-lnn%3Dln(1%2B%5Cfrac%7B1%7D%7Bn%7D%20)%3E0

所以b_%7Bn%7D%20單調(diào)遞減且有下界,由單調(diào)有界原則,知b_%7Bn%7D%20收斂.我們把b_%7Bn%7D%20的極限記作%5Cgamma%20,稱為Euler常數(shù).

因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=b_%7B2n%7D%20" alt="b_%7B2n%7D%20">是b_%7Bn%7D%20的子列,所以ta們會(huì)收斂到相同的極限.于是有:

%5Clim_%7Bn%5Cto%E2%88%9E%7D%20a_%7Bn%7D%20%20%3D%5Clim_%7Bn%5Cto%E2%88%9E%7D%20(b_%7B2n%7D%2Bln2n)-(b_%7Bn%7D%2Blnn)

? ? ? ? ? ? ? ?%3D%5Clim_%7Bn%5Cto%E2%88%9E%7D%20(%5Cgamma%20-%5Cgamma)%2B%20(lnn-lnn)%2Bln2

? ? ? ? ? ? ? ?%3Dln2

解法三(利用夾逼定理)

由解法二的①知,有

ln(1%2B%5Cfrac%7B1%7D%7Bn%2B1%7D%20)%2Bln(1%2B%5Cfrac%7B1%7D%7Bn%2B2%7D%20)%2B%5Ccdots%2Bln(1%2B%5Cfrac%7B1%7D%7B2n%7D%20)%3Ca_%7Bn%7D%20%3Cln(1%2B%5Cfrac%7B1%7D%7Bn%7D%20)%2Bln(1%2B%5Cfrac%7B1%7D%7Bn%2B1%7D%20)%2B%5Ccdots%2Bln(1%2B%5Cfrac%7B1%7D%7B2n-1%7D%20)

化簡(jiǎn),得

ln(2n%2B1)-ln(n%2B1)%3Ca_%7Bn%7D%20%3Cln2n-lnn

又因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=%5Clim_%7Bn%5Cto%E2%88%9E%7D%20ln(2n%2B1)-ln(n%2B1)%3D%5Clim_%7Bn%5Cto%E2%88%9E%7Dln(%5Cfrac%7B2n%2B1%7D%7Bn%2B1%7D%20)%3Dln2" alt="%5Clim_%7Bn%5Cto%E2%88%9E%7D%20ln(2n%2B1)-ln(n%2B1)%3D%5Clim_%7Bn%5Cto%E2%88%9E%7Dln(%5Cfrac%7B2n%2B1%7D%7Bn%2B1%7D%20)%3Dln2">

%5Clim_%7Bn%5Cto%E2%88%9E%7D%20ln2n-lnn%3D%5Clim_%7Bn%5Cto%E2%88%9E%7Dln2%2Blnn-lnn%3Dln2

由夾逼定理知

%5Clim_%7Bn%5Cto%E2%88%9E%7D%20a_%7Bn%7D%20%3Dln2

解法四(利用Catalan恒等式)

④(Catalan恒等式)

設(shè)c_%7B2n%7D%20%3D1-%5Cfrac%7B1%7D%7B2%7D%20%2B%5Cfrac%7B1%7D%7B3%7D-%5Cfrac%7B1%7D%7B4%7D%2B%5Ccdots%2B%5Cfrac%7B1%7D%7B2n-1%7D-%5Cfrac%7B1%7D%7B2n%7D

c_%7B2n%7D%20%3D(1%2B%5Cfrac%7B1%7D%7B2%7D%20%2B%5Cfrac%7B1%7D%7B3%7D%20%2B%5Ccdots%2B%5Cfrac%7B1%7D%7B2n-1%7D%2B%5Cfrac%7B1%7D%7B2n%7D)-2(%5Cfrac%7B1%7D%7B2%7D%20%2B%5Cfrac%7B1%7D%7B4%7D%2B%5Ccdots%2B%5Cfrac%7B1%7D%7B2n%7D)

? ? ? ? ? ?%3D(1%2B%5Cfrac%7B1%7D%7B2%7D%20%2B%5Cfrac%7B1%7D%7B3%7D%20%2B%5Ccdots%2B%5Cfrac%7B1%7D%7B2n-1%7D%2B%5Cfrac%7B1%7D%7B2n%7D)-(1%2B%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B4%7D%2B%5Ccdots%2B%5Cfrac%7B1%7D%7Bn%7D%20)

? ? ? ? ? ?%3D%5Cfrac%7B1%7D%7Bn%2B1%7D%2B%5Cfrac%7B1%7D%7Bn%2B2%7D%2B%5Ccdots%2B%5Cfrac%7B1%7D%7Bn%2Bn%7D

? ? ? ? ? ?%3Da_%7Bn%7D%20

2n%5Crightarrow%20%E2%88%9E,注意到ln(x%2B1)Maclaurin級(jí)數(shù)展開(kāi)為

ln(x%2B1)%3D%5Csum_%7Bn%3D0%7D%5E%E2%88%9E%5Cfrac%7B(-1)%5En%20%7D%7Bn%2B1%7D%20%20x%5E%7Bn%2B1%7D,收斂域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=(-1%2C1%5D" alt="(-1%2C1%5D">,取x%3D1,有

ln(1%2B1)%3D1-%5Cfrac%7B1%7D%7B2%7D%20%2B%5Cfrac%7B1%7D%7B3%7D-%5Cfrac%7B1%7D%7B4%7D%2B%5Ccdots%2B%5Cfrac%7B1%7D%7B2n-1%7D-%5Cfrac%7B1%7D%7B2n%7D%3Dln2

所以%5Clim_%7Bn%5Cto%E2%88%9E%7D%20c_%7B2n%7D%20%20%3D%5Clim_%7Bn%5Cto%E2%88%9E%7D%20a_%7Bn%7D%20%3Dln2

參考文獻(xiàn):

[1]陳紀(jì)修,於崇華,金路.數(shù)學(xué)分析[M].北京:高等教育出版社2018.11

[2]裴禮文.數(shù)學(xué)分析中的典型問(wèn)題與方法[M].北京:高等教育出版社2019.9

[3]謝惠民,惲自求,易法槐,錢定邊.數(shù)學(xué)分析習(xí)題課講義[M].北京:高等教育出版社2018.11

(完)


【數(shù)學(xué)分析】一道簡(jiǎn)單數(shù)列極限的多種解法的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
肇源县| 刚察县| 沈阳市| 思茅市| 友谊县| 丹巴县| 余姚市| 周至县| 凌海市| 阳曲县| 东乡族自治县| 交城县| 晋江市| 甘孜县| 崇义县| 富平县| 鱼台县| 桃江县| 丰城市| 江津市| 神木县| 绥棱县| 长海县| 兴文县| 开阳县| 永胜县| 温宿县| 漳浦县| 九江县| 邹城市| 深圳市| 盱眙县| 金沙县| 邮箱| 望江县| 宜良县| 台中县| 焦作市| 图片| 大同县| 江源县|