程守慶教授-複變數(shù)函數(shù)論作業(yè)專區(qū)
2021-06-25 22:37 作者:西敏寺的SkLogW開始沸騰 | 我要投稿
見
https://ocw.nthu.edu.tw/ocw/index.php?page=course_news_content&cid=289&id=1014








期末考試題及講解見下面視頻合集的最后一P


第1題: Let Ω=C\{z| |z|≤1}. Characterize Aut(Ω).
第2題: Does there exist a holomorphic function from U onto C?
第3題: Let Ω be a simply-connected domain in C, . Show that there exists a bounded one-to-one holomorphic function on Ω.
第4題: Find a biholomorphic mapping from the domain Ω onto the open unit disc. See 15:30.
第5題: Find a biholomorphic mapping from the domain Ω bounded by two circles to the annulus A={z| a<|z|<1}. Also find a. See 28:55.
第6題: State and prove Vitali's theorem.
第7題: State and prove Poincaré's inequivalence theorem.
標(biāo)簽: