【邏輯與數(shù)學(xué)基礎(chǔ)講座】反推數(shù)學(xué)及其數(shù)學(xué)基礎(chǔ)問題


0.00 undecidability of Hlting Problem

0.01 definition of 0'

0.1 RCA0 and ACA0

0.2 (minimal) models of reverse maths

1 Ramsey's theorem (e.g. any pair formed by elements in H is colored by the same colour)

2 RT_n^n can be reduced to RT_2^n二染色

- 3 proof of Ramsey's theorem (Ramsey used induction.for simplicity, we only go from RT^1_2 to ^2_2)



6 Another proof.可能如4跟0是染是紅的,跟1染是藍(lán)的(總有位置沒人占,因此對(duì)數(shù)n,最多問n次,最后每個(gè)數(shù)都會(huì)出現(xiàn))

7 analysis of two proofs

7.5 left turns mean red

8 ACA0 implies RTnk

9 RT32 implies ACA0

10 停機(jī)問題限制到前段(前a個(gè)階段,如2,就看第0個(gè)程序(輸入是0)和第1個(gè)程序(輸入是1))(不可能永遠(yuǎn)變化,因?yàn)樽兂赏C(jī)了就不會(huì)再變化,如a=100最多變100次)

11 如果e要停機(jī)一定在b之前停

12 RT22 and WKL0 (Liu, etc.)
標(biāo)簽: