最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

97邊形-(一)

2022-10-19 21:19 作者:初音ミク861185  | 我要投稿

97邊形

1.sin(2*n*pi/97)

I.

上半?yún)^(qū)-2次剩余:A1111=2*(sin(2*pi/97)+sin(70*pi/97)+sin(122*pi/97));

A1112=2*(sin(150*pi/97)+sin(12*pi/97)+sin(32*pi/97));

A1121=2*(sin(100*pi/97)+sin(8*pi/97)+sin(86*pi/97));

A1122=2*(sin(128*pi/97)+sin(18*pi/97)+sin(48*pi/97));

A1211=2*(sin(4*pi/97)+sin(140*pi/97)+sin(50*pi/97));

A1212=2*(sin(106*pi/97)+sin(24*pi/97)+sin(64*pi/97));

A1221=2*(sin(6*pi/97)+sin(16*pi/97)+sin(172*pi/97));

A1222=2*(sin(62*pi/97)+sin(36*pi/97)+sin(96*pi/97));

下半?yún)^(qū)-非2次剩余:A2111=2*(sin(10*pi/97)+sin(156*pi/97)+sin(28*pi/97));

A2112=2*(sin(26*pi/97)+sin(134*pi/97)+sin(34*pi/97));

A2121=2*(sin(112*pi/97)+sin(40*pi/97)+sin(42*pi/97));

A2122=2*(sin(58*pi/97)+sin(90*pi/97)+sin(46*pi/97));

A2211=2*(sin(20*pi/97)+sin(118*pi/97)+sin(56*pi/97));

A2212=2*(sin(52*pi/97)+sin(74*pi/97)+sin(68*pi/97));

A2221=2*(sin(78*pi/97)+sin(14*pi/97)+sin(102*pi/97));

A2222=2*(sin(30*pi/97)+sin(80*pi/97)+sin(84*pi/97));

梯次分離:A1111^2+A1112^2+A1121^2+A1122^2+A1211^2+A1212^2+A1221^2+A1222^2=(97-5*sqrt(97))/2;

A2111^2+A2112^2+A2121^2+A2122^2+A2211^2+A2212^2+A2221^2+A2222^2=(97+5*sqrt(97))/2;

A2111^2+A2112^2+A2121^2+A2122^2=(97+5*sqrt(97)-sqrt(970-22*sqrt(97)))/4;

A2211^2+A2212^2+A2221^2+A2222^2=(97+5*sqrt(97)+sqrt(970-22*sqrt(97)))/4;

A1111^2+A1112^2+A1121^2+A1122^2=(97-5*sqrt(97)-sqrt(970+22*sqrt(97)))/4

A1211^2+A1212^2+A1221^2+A1222^2=(97-5*sqrt(97)+sqrt(970+22*sqrt(97)))/4

(A1111^2+A1112^2-A1121^2-A1122^2)^2+(A1211^2+A1212^2-A1221^2-A1222^2)^2+(A2111^2+A2112^2-A2121^2-A2122^2)^2+(A2211^2+A2212^2-A2221^2-A2222^2)^2=873;

((A1111^2+A1112^2-A1121^2-A1122^2)^2+(A1211^2+A1212^2-A1221^2-A1222^2)^2-(A2111^2+A2112^2-A2121^2-A2122^2)^2-(A2211^2+A2212^2-A2221^2-A2222^2)^2)/sqrt(97)=-77;

((A1111^2+A1112^2-A1121^2-A1122^2)^2-(A1211^2+A1212^2-A1221^2-A1222^2)^2)^2+((A2111^2+A2112^2-A2121^2-A2122^2)^2-(A2211^2+A2212^2-A2221^2-A2222^2)^2)^2=236389;

(((A1111^2+A1112^2-A1121^2-A1122^2)^2-(A1211^2+A1212^2-A1221^2-A1222^2)^2)^2-((A2111^2+A2112^2-A2121^2-A2122^2)^2-(A2211^2+A2212^2-A2221^2-A2222^2)^2)^2)/sqrt(97);

A1111^2+A1112^2=(97-5*sqrt(97)-sqrt(970+22*sqrt(97))-2*sqrt(873-77*sqrt(97)-sqrt(472778-47274*sqrt(97))))/8

A1121^2+A1122^2=(97-5*sqrt(97)-sqrt(970+22*sqrt(97))+2*sqrt(873-77*sqrt(97)-sqrt(472778-47274*sqrt(97))))/8

A1211^2+A1212^2=(97-5*sqrt(97)+sqrt(970+22*sqrt(97))-2*sqrt(873-77*sqrt(97)+sqrt(472778-47274*sqrt(97))))/8

A1221^2+A1222^2=(97-5*sqrt(97)+sqrt(970+22*sqrt(97))+2*sqrt(873-77*sqrt(97)+sqrt(472778-47274*sqrt(97))))/8

(A1111^2-A1112^2)^2+(A1121^2-A1122^2)^2+(A1211^2-A1212^2)^2+(A1221^2-A1222^2)^2+(A2111^2-A2112^2)^2+(A2121^2-A2122^2)^2+(A2211^2-A2212^2)^2+(A2221^2-A2222^2)^2=873;

((A1111^2-A1112^2)^2+(A1121^2-A1122^2)^2+(A1211^2-A1212^2)^2+(A1221^2-A1222^2)^2)-((A2111^2-A2112^2)^2+(A2121^2-A2122^2)^2+(A2211^2-A2212^2)^2+(A2221^2-A2222^2)^2)=-41*sqrt(97);

((A1111^2-A1112^2)^2+(A1121^2-A1122^2)^2-(A1211^2-A1212^2)^2-(A1221^2-A1222^2)^2)^2+((A2111^2-A2112^2)^2+(A2121^2-A2122^2)^2-(A2211^2-A2212^2)^2-(A2221^2-A2222^2)^2)^2=232121;

((A1111^2-A1112^2)^2+(A1121^2-A1122^2)^2-(A1211^2-A1212^2)^2-(A1221^2-A1222^2)^2)^2-((A2111^2-A2112^2)^2+(A2121^2-A2122^2)^2-(A2211^2-A2212^2)^2-(A2221^2-A2222^2)^2)^2=-12577*sqrt(97);

((A1111^2-A1112^2)^2-(A1121^2-A1122^2)^2)^2+((A1211^2-A1212^2)^2-(A1221^2-A1222^2)^2)^2+((A2111^2-A2112^2)^2-(A2121^2-A2122^2)^2)^2+((A2211^2-A2212^2)^2-(A2221^2-A2222^2)^2)^2=155685;

((A1111^2-A1112^2)^2-(A1121^2-A1122^2)^2)^2+((A1211^2-A1212^2)^2-(A1221^2-A1222^2)^2)^2-((A2111^2-A2112^2)^2-(A2121^2-A2122^2)^2)^2-((A2211^2-A2212^2)^2-(A2221^2-A2222^2)^2)^2=-11417*sqrt(97);

(((A1111^2-A1112^2)^2-(A1121^2-A1122^2)^2)^2-((A1211^2-A1212^2)^2-(A1221^2-A1222^2)^2)^2)^2+(((A2111^2-A2112^2)^2-(A2121^2-A2122^2)^2)^2-((A2211^2-A2212^2)^2-(A2221^2-A2222^2)^2)^2)^2=13376009485;

((((A1111^2-A1112^2)^2-(A1121^2-A1122^2)^2)^2-((A1211^2-A1212^2)^2-(A1221^2-A1222^2)^2)^2)^2-(((A2111^2-A2112^2)^2-(A2121^2-A2122^2)^2)^2-((A2211^2-A2212^2)^2-(A2221^2-A2222^2)^2)^2)^2)/sqrt(97)=-1263219837*sqrt(97);

分離結(jié)果:

A1111=sqrt(97-5*sqrt(97)-sqrt(970+22*sqrt(97))-2*sqrt(873-77*sqrt(97)-sqrt(472778-47274*sqrt(97)))-2*sqrt(2)*sqrt(873-41*sqrt(97)-sqrt(464242-25154*sqrt(97))-2*sqrt(155685-11417*sqrt(97)-sqrt(26752018970-2526439674*sqrt(97)))))/4;

A1112=sqrt(97-5*sqrt(97)-sqrt(970+22*sqrt(97))-2*sqrt(873-77*sqrt(97)-sqrt(472778-47274*sqrt(97)))+2*sqrt(2)*sqrt(873-41*sqrt(97)-sqrt(464242-25154*sqrt(97))-2*sqrt(155685-11417*sqrt(97)-sqrt(26752018970-2526439674*sqrt(97)))))/4;

A1121=sqrt(97-5*sqrt(97)-sqrt(970+22*sqrt(97))+2*sqrt(873-77*sqrt(97)-sqrt(472778-47274*sqrt(97)))-2*sqrt(2)*sqrt(873-41*sqrt(97)-sqrt(464242-25154*sqrt(97))+2*sqrt(155685-11417*sqrt(97)-sqrt(26752018970-2526439674*sqrt(97)))))/4;

A1122=sqrt(97-5*sqrt(97)-sqrt(970+22*sqrt(97))+2*sqrt(873-77*sqrt(97)-sqrt(472778-47274*sqrt(97)))+2*sqrt(2)*sqrt(873-41*sqrt(97)-sqrt(464242-25154*sqrt(97))+2*sqrt(155685-11417*sqrt(97)-sqrt(26752018970-2526439674*sqrt(97)))))/4;

A1211=sqrt(97-5*sqrt(97)+sqrt(970+22*sqrt(97))-2*sqrt(873-77*sqrt(97)+sqrt(472778-47274*sqrt(97)))-2*sqrt(2)*sqrt(873-41*sqrt(97)+sqrt(464242-25154*sqrt(97))-2*sqrt(155685-11417*sqrt(97)+sqrt(26752018970-2526439674*sqrt(97)))))/4;

A1212=sqrt(97-5*sqrt(97)+sqrt(970+22*sqrt(97))-2*sqrt(873-77*sqrt(97)+sqrt(472778-47274*sqrt(97)))+2*sqrt(2)*sqrt(873-41*sqrt(97)+sqrt(464242-25154*sqrt(97))-2*sqrt(155685-11417*sqrt(97)+sqrt(26752018970-2526439674*sqrt(97)))))/4;

A1221=sqrt(97-5*sqrt(97)+sqrt(970+22*sqrt(97))+2*sqrt(873-77*sqrt(97)+sqrt(472778-47274*sqrt(97)))-2*sqrt(2)*sqrt(873-41*sqrt(97)+sqrt(464242-25154*sqrt(97))+2*sqrt(155685-11417*sqrt(97)+sqrt(26752018970-2526439674*sqrt(97)))))/4;

A1222=sqrt(97-5*sqrt(97)+sqrt(970+22*sqrt(97))+2*sqrt(873-77*sqrt(97)+sqrt(472778-47274*sqrt(97)))+2*sqrt(2)*sqrt(873-41*sqrt(97)+sqrt(464242-25154*sqrt(97))+2*sqrt(155685-11417*sqrt(97)+sqrt(26752018970-2526439674*sqrt(97)))))/4;

A2111=sqrt(97+5*sqrt(97)-sqrt(970-22*sqrt(97))-2*sqrt(873+77*sqrt(97)+sqrt(472778+47274*sqrt(97)))-2*sqrt(2)*sqrt(873+41*sqrt(97)-sqrt(464242+25154*sqrt(97))-2*sqrt(155685+11417*sqrt(97)-sqrt(26752018970+2526439674*sqrt(97)))))/4;

A2112=sqrt(97+5*sqrt(97)-sqrt(970-22*sqrt(97))-2*sqrt(873+77*sqrt(97)+sqrt(472778+47274*sqrt(97)))+2*sqrt(2)*sqrt(873+41*sqrt(97)-sqrt(464242+25154*sqrt(97))-2*sqrt(155685+11417*sqrt(97)-sqrt(26752018970+2526439674*sqrt(97)))))/4;

A2121=sqrt(97+5*sqrt(97)-sqrt(970-22*sqrt(97))+2*sqrt(873+77*sqrt(97)+sqrt(472778+47274*sqrt(97)))-2*sqrt(2)*sqrt(873+41*sqrt(97)-sqrt(464242+25154*sqrt(97))+2*sqrt(155685+11417*sqrt(97)-sqrt(26752018970+2526439674*sqrt(97)))))/4;

A2122=sqrt(97+5*sqrt(97)-sqrt(970-22*sqrt(97))+2*sqrt(873+77*sqrt(97)+sqrt(472778+47274*sqrt(97)))+2*sqrt(2)*sqrt(873+41*sqrt(97)-sqrt(464242+25154*sqrt(97))+2*sqrt(155685+11417*sqrt(97)-sqrt(26752018970+2526439674*sqrt(97)))))/4;

A2211=sqrt(97+5*sqrt(97)+sqrt(970-22*sqrt(97))+2*sqrt(873+77*sqrt(97)-sqrt(472778+47274*sqrt(97)))-2*sqrt(2)*sqrt(873+41*sqrt(97)+sqrt(464242+25154*sqrt(97))+2*sqrt(155685+11417*sqrt(97)+sqrt(26752018970+2526439674*sqrt(97)))))/4;

A2212=sqrt(97+5*sqrt(97)+sqrt(970-22*sqrt(97))+2*sqrt(873+77*sqrt(97)-sqrt(472778+47274*sqrt(97)))+2*sqrt(2)*sqrt(873+41*sqrt(97)+sqrt(464242+25154*sqrt(97))+2*sqrt(155685+11417*sqrt(97)+sqrt(26752018970+2526439674*sqrt(97)))))/4;

A2221=sqrt(97+5*sqrt(97)+sqrt(970-22*sqrt(97))-2*sqrt(873+77*sqrt(97)-sqrt(472778+47274*sqrt(97)))-2*sqrt(2)*sqrt(873+41*sqrt(97)+sqrt(464242+25154*sqrt(97))-2*sqrt(155685+11417*sqrt(97)+sqrt(26752018970+2526439674*sqrt(97)))))/4;

A2222=sqrt(97+5*sqrt(97)+sqrt(970-22*sqrt(97))-2*sqrt(873+77*sqrt(97)-sqrt(472778+47274*sqrt(97)))+2*sqrt(2)*sqrt(873+41*sqrt(97)+sqrt(464242+25154*sqrt(97))-2*sqrt(155685+11417*sqrt(97)+sqrt(26752018970+2526439674*sqrt(97)))))/4;

?

II.

B1111=4*(sin(2*pi/97)*sin(70*pi/97)+sin(70*pi/97)*sin(122*pi/97)+sin(122*pi/97)*sin(2*pi/97));

B1112=4*(sin(150*pi/97)*sin(12*pi/97)+sin(12*pi/97)*sin(32*pi/97)+sin(32*pi/97)*sin(150*pi/97));

B1121=4*(sin(100*pi/97)*sin(8*pi/97)+sin(8*pi/97)*sin(86*pi/97)+sin(86*pi/97)*sin(100*pi/97));

B1122=4*(sin(128*pi/97)*sin(18*pi/97)+sin(18*pi/97)*sin(48*pi/97)+sin(48*pi/97)*sin(128*pi/97));

B1211=4*(sin(4*pi/97)*sin(140*pi/97)+sin(140*pi/97)*sin(50*pi/97)+sin(50*pi/97)*sin(4*pi/97));

B1212=4*(sin(106*pi/97)*sin(24*pi/97)+sin(24*pi/97)*sin(64*pi/97)+sin(64*pi/97)*sin(106*pi/97));

B1221=4*(sin(6*pi/97)*sin(16*pi/97)+sin(16*pi/97)*sin(172*pi/97)+sin(172*pi/97)*sin(6*pi/97));

B1222=4*(sin(62*pi/97)*sin(36*pi/97)+sin(36*pi/97)*sin(96*pi/97)+sin(96*pi/97)*sin(62*pi/97));

B2111=4*(sin(10*pi/97)*sin(156*pi/97)+sin(156*pi/97)*sin(28*pi/97)+sin(28*pi/97)*sin(10*pi/97));

B2112=4*(sin(26*pi/97)*sin(134*pi/97)+sin(134*pi/97)*sin(34*pi/97)+sin(34*pi/97)*sin(26*pi/97));

B2121=4*(sin(112*pi/97)*sin(40*pi/97)+sin(40*pi/97)*sin(42*pi/97)+sin(42*pi/97)*sin(112*pi/97));

B2122=4*(sin(58*pi/97)*sin(90*pi/97)+sin(90*pi/97)*sin(46*pi/97)+sin(46*pi/97)*sin(58*pi/97));

B2211=4*(sin(20*pi/97)*sin(118*pi/97)+sin(118*pi/97)*sin(56*pi/97)+sin(56*pi/97)*sin(20*pi/97));

B2212=4*(sin(52*pi/97)*sin(74*pi/97)+sin(74*pi/97)*sin(68*pi/97)+sin(68*pi/97)*sin(52*pi/97));

B2221=4*(sin(78*pi/97)*sin(14*pi/97)+sin(14*pi/97)*sin(102*pi/97)+sin(102*pi/97)*sin(78*pi/97));

B2222=4*(sin(30*pi/97)*sin(80*pi/97)+sin(80*pi/97)*sin(84*pi/97)+sin(84*pi/97)*sin(30*pi/97));

分離各變量得到

B1111=(-sqrt(97)-sqrt(97-4*sqrt(97))-sqrt(194-12*sqrt(97)-2*sqrt(10961-1068*sqrt(97)))+2*sqrt(97-4*sqrt(97)-sqrt(3589-248*sqrt(97))-sqrt(7566-752*sqrt(97)+2*sqrt(16699229-1695312*sqrt(97)))))/8;

B1112=(-sqrt(97)-sqrt(97-4*sqrt(97))-sqrt(194-12*sqrt(97)-2*sqrt(10961-1068*sqrt(97)))-2*sqrt(97-4*sqrt(97)-sqrt(3589-248*sqrt(97))-sqrt(7566-752*sqrt(97)+2*sqrt(16699229-1695312*sqrt(97)))))/8;

B1121=(-sqrt(97)-sqrt(97-4*sqrt(97))+sqrt(194-12*sqrt(97)-2*sqrt(10961-1068*sqrt(97)))+2*sqrt(97-4*sqrt(97)-sqrt(3589-248*sqrt(97))+sqrt(7566-752*sqrt(97)+2*sqrt(16699229-1695312*sqrt(97)))))/8;

B1122=(-sqrt(97)-sqrt(97-4*sqrt(97))+sqrt(194-12*sqrt(97)-2*sqrt(10961-1068*sqrt(97)))-2*sqrt(97-4*sqrt(97)-sqrt(3589-248*sqrt(97))+sqrt(7566-752*sqrt(97)+2*sqrt(16699229-1695312*sqrt(97)))))/8;

B1211=(-sqrt(97)+sqrt(97-4*sqrt(97))-sqrt(194-12*sqrt(97)+2*sqrt(10961-1068*sqrt(97)))-2*sqrt(97-4*sqrt(97)+sqrt(3589-248*sqrt(97))-sqrt(7566-752*sqrt(97)-2*sqrt(16699229-1695312*sqrt(97)))))/8;

B1212=(-sqrt(97)+sqrt(97-4*sqrt(97))-sqrt(194-12*sqrt(97)+2*sqrt(10961-1068*sqrt(97)))+2*sqrt(97-4*sqrt(97)+sqrt(3589-248*sqrt(97))-sqrt(7566-752*sqrt(97)-2*sqrt(16699229-1695312*sqrt(97)))))/8;

B1221=(-sqrt(97)+sqrt(97-4*sqrt(97))+sqrt(194-12*sqrt(97)+2*sqrt(10961-1068*sqrt(97)))-2*sqrt(97-4*sqrt(97)+sqrt(3589-248*sqrt(97))+sqrt(7566-752*sqrt(97)-2*sqrt(16699229-1695312*sqrt(97)))))/8;

B1222=(-sqrt(97)+sqrt(97-4*sqrt(97))+sqrt(194-12*sqrt(97)+2*sqrt(10961-1068*sqrt(97)))+2*sqrt(97-4*sqrt(97)+sqrt(3589-248*sqrt(97))+sqrt(7566-752*sqrt(97)-2*sqrt(16699229-1695312*sqrt(97)))))/8;

B2111=(sqrt(97)-sqrt(97+4*sqrt(97))-sqrt(194+12*sqrt(97)+2*sqrt(10961+1068*sqrt(97)))+2*sqrt(97+4*sqrt(97)-sqrt(3589+248*sqrt(97))-sqrt(7566+752*sqrt(97)-2*sqrt(16699229+1695312*sqrt(97)))))/8;

B2112=(sqrt(97)-sqrt(97+4*sqrt(97))-sqrt(194+12*sqrt(97)+2*sqrt(10961+1068*sqrt(97)))-2*sqrt(97+4*sqrt(97)-sqrt(3589+248*sqrt(97))-sqrt(7566+752*sqrt(97)-2*sqrt(16699229+1695312*sqrt(97)))))/8;

B2121=(sqrt(97)-sqrt(97+4*sqrt(97))+sqrt(194+12*sqrt(97)+2*sqrt(10961+1068*sqrt(97)))-2*sqrt(97+4*sqrt(97)-sqrt(3589+248*sqrt(97))+sqrt(7566+752*sqrt(97)-2*sqrt(16699229+1695312*sqrt(97)))))/8;

B2122=(sqrt(97)-sqrt(97+4*sqrt(97))+sqrt(194+12*sqrt(97)+2*sqrt(10961+1068*sqrt(97)))+2*sqrt(97+4*sqrt(97)-sqrt(3589+248*sqrt(97))+sqrt(7566+752*sqrt(97)-2*sqrt(16699229+1695312*sqrt(97)))))/8;

B2211=(sqrt(97)+sqrt(97+4*sqrt(97))+sqrt(194+12*sqrt(97)-2*sqrt(10961+1068*sqrt(97)))-2*sqrt(97+4*sqrt(97)+sqrt(3589+248*sqrt(97))+sqrt(7566+752*sqrt(97)+2*sqrt(16699229+1695312*sqrt(97)))))/8;

B2212=(sqrt(97)+sqrt(97+4*sqrt(97))+sqrt(194+12*sqrt(97)-2*sqrt(10961+1068*sqrt(97)))+2*sqrt(97+4*sqrt(97)+sqrt(3589+248*sqrt(97))+sqrt(7566+752*sqrt(97)+2*sqrt(16699229+1695312*sqrt(97)))))/8;

B2221=(sqrt(97)+sqrt(97+4*sqrt(97))-sqrt(194+12*sqrt(97)-2*sqrt(10961+1068*sqrt(97)))-2*sqrt(97+4*sqrt(97)+sqrt(3589+248*sqrt(97))-sqrt(7566+752*sqrt(97)+2*sqrt(16699229+1695312*sqrt(97)))))/8;

B2222=(sqrt(97)+sqrt(97+4*sqrt(97))-sqrt(194+12*sqrt(97)-2*sqrt(10961+1068*sqrt(97)))+2*sqrt(97+4*sqrt(97)+sqrt(3589+248*sqrt(97))-sqrt(7566+752*sqrt(97)+2*sqrt(16699229+1695312*sqrt(97)))))/8;

?

III.

C1111=8*(sin(2*pi/97)*sin(70*pi/97)*sin(122*pi/97));

C1112=8*(sin(150*pi/97)*sin(12*pi/97)*sin(32*pi/97));

C1121=8*(sin(100*pi/97)*sin(8*pi/97)*sin(86*pi/97));

C1122=8*(sin(128*pi/97)*sin(18*pi/97)*sin(48*pi/97));

C1211=8*(sin(4*pi/97)*sin(140*pi/97)*sin(50*pi/97));

C1212=8*(sin(106*pi/97)*sin(24*pi/97)*sin(64*pi/97));

C1221=8*(sin(6*pi/97)*sin(16*pi/97)*sin(172*pi/97));

C1222=8*(sin(62*pi/97)*sin(36*pi/97)*sin(96*pi/97));

C2111=8*(sin(10*pi/97)*sin(156*pi/97)*sin(28*pi/97));

C2112=8*(sin(26*pi/97)*sin(134*pi/97)*sin(34*pi/97));

C2121=8*(sin(112*pi/97)*sin(40*pi/97)*sin(42*pi/97));

C2122=8*(sin(58*pi/97)*sin(90*pi/97)*sin(46*pi/97));

C2211=8*(sin(20*pi/97)*sin(118*pi/97)*sin(56*pi/97));

C2212=8*(sin(52*pi/97)*sin(74*pi/97)*sin(68*pi/97));

C2221=8*(sin(78*pi/97)*sin(14*pi/97)*sin(102*pi/97));

C2222=8*(sin(30*pi/97)*sin(80*pi/97)*sin(84*pi/97));?

C1111=-sqrt(97-5*sqrt(97)+sqrt(970+22*sqrt(97))-2*sqrt(873-77*sqrt(97)+sqrt(472778-47274*sqrt(97)))-2*sqrt(2)*sqrt(873-41*sqrt(97)+sqrt(464242-25154*sqrt(97))-2*sqrt(155685-11417*sqrt(97)+sqrt(26752018970-2526439674*sqrt(97)))))/4;

C1112=-sqrt(97-5*sqrt(97)+sqrt(970+22*sqrt(97))-2*sqrt(873-77*sqrt(97)+sqrt(472778-47274*sqrt(97)))+2*sqrt(2)*sqrt(873-41*sqrt(97)+sqrt(464242-25154*sqrt(97))-2*sqrt(155685-11417*sqrt(97)+sqrt(26752018970-2526439674*sqrt(97)))))/4;

C1121=-sqrt(97-5*sqrt(97)+sqrt(970+22*sqrt(97))+2*sqrt(873-77*sqrt(97)+sqrt(472778-47274*sqrt(97)))-2*sqrt(2)*sqrt(873-41*sqrt(97)+sqrt(464242-25154*sqrt(97))+2*sqrt(155685-11417*sqrt(97)+sqrt(26752018970-2526439674*sqrt(97)))))/4;

C1122=-sqrt(97-5*sqrt(97)+sqrt(970+22*sqrt(97))+2*sqrt(873-77*sqrt(97)+sqrt(472778-47274*sqrt(97)))+2*sqrt(2)*sqrt(873-41*sqrt(97)+sqrt(464242-25154*sqrt(97))+2*sqrt(155685-11417*sqrt(97)+sqrt(26752018970-2526439674*sqrt(97)))))/4;

C1211=-sqrt(97-5*sqrt(97)-sqrt(970+22*sqrt(97))+2*sqrt(873-77*sqrt(97)-sqrt(472778-47274*sqrt(97)))-2*sqrt(2)*sqrt(873-41*sqrt(97)-sqrt(464242-25154*sqrt(97))+2*sqrt(155685-11417*sqrt(97)-sqrt(26752018970-2526439674*sqrt(97)))))/4;

C1212=-sqrt(97-5*sqrt(97)-sqrt(970+22*sqrt(97))+2*sqrt(873-77*sqrt(97)-sqrt(472778-47274*sqrt(97)))+2*sqrt(2)*sqrt(873-41*sqrt(97)-sqrt(464242-25154*sqrt(97))+2*sqrt(155685-11417*sqrt(97)-sqrt(26752018970-2526439674*sqrt(97)))))/4;

C1221=-sqrt(97-5*sqrt(97)-sqrt(970+22*sqrt(97))-2*sqrt(873-77*sqrt(97)-sqrt(472778-47274*sqrt(97)))+2*sqrt(2)*sqrt(873-41*sqrt(97)-sqrt(464242-25154*sqrt(97))-2*sqrt(155685-11417*sqrt(97)-sqrt(26752018970-2526439674*sqrt(97)))))/4;

C1222=sqrt(97-5*sqrt(97)-sqrt(970+22*sqrt(97))-2*sqrt(873-77*sqrt(97)-sqrt(472778-47274*sqrt(97)))-2*sqrt(2)*sqrt(873-41*sqrt(97)-sqrt(464242-25154*sqrt(97))-2*sqrt(155685-11417*sqrt(97)-sqrt(26752018970-2526439674*sqrt(97)))))/4;

C2111=-sqrt(97+5*sqrt(97)+sqrt(970-22*sqrt(97))+2*sqrt(873+77*sqrt(97)-sqrt(472778+47274*sqrt(97)))-2*sqrt(2)*sqrt(873+41*sqrt(97)+sqrt(464242+25154*sqrt(97))+2*sqrt(155685+11417*sqrt(97)+sqrt(26752018970+2526439674*sqrt(97)))))/4;

C2112=-sqrt(97+5*sqrt(97)+sqrt(970-22*sqrt(97))+2*sqrt(873+77*sqrt(97)-sqrt(472778+47274*sqrt(97)))+2*sqrt(2)*sqrt(873+41*sqrt(97)+sqrt(464242+25154*sqrt(97))+2*sqrt(155685+11417*sqrt(97)+sqrt(26752018970+2526439674*sqrt(97)))))/4;

C2121=-sqrt(97+5*sqrt(97)+sqrt(970-22*sqrt(97))-2*sqrt(873+77*sqrt(97)-sqrt(472778+47274*sqrt(97)))+2*sqrt(2)*sqrt(873+41*sqrt(97)+sqrt(464242+25154*sqrt(97))-2*sqrt(155685+11417*sqrt(97)+sqrt(26752018970+2526439674*sqrt(97)))))/4;

C2122=sqrt(97+5*sqrt(97)+sqrt(970-22*sqrt(97))-2*sqrt(873+77*sqrt(97)-sqrt(472778+47274*sqrt(97)))-2*sqrt(2)*sqrt(873+41*sqrt(97)+sqrt(464242+25154*sqrt(97))-2*sqrt(155685+11417*sqrt(97)+sqrt(26752018970+2526439674*sqrt(97)))))/4;

C2211=-sqrt(97+5*sqrt(97)-sqrt(970-22*sqrt(97))+2*sqrt(873+77*sqrt(97)+sqrt(472778+47274*sqrt(97)))-2*sqrt(2)*sqrt(873+41*sqrt(97)-sqrt(464242+25154*sqrt(97))+2*sqrt(155685+11417*sqrt(97)-sqrt(26752018970+2526439674*sqrt(97)))))/4;

C2212=sqrt(97+5*sqrt(97)-sqrt(970-22*sqrt(97))+2*sqrt(873+77*sqrt(97)+sqrt(472778+47274*sqrt(97)))+2*sqrt(2)*sqrt(873+41*sqrt(97)-sqrt(464242+25154*sqrt(97))+2*sqrt(155685+11417*sqrt(97)-sqrt(26752018970+2526439674*sqrt(97)))))/4;

C2221=-sqrt(97+5*sqrt(97)-sqrt(970-22*sqrt(97))-2*sqrt(873+77*sqrt(97)+sqrt(472778+47274*sqrt(97)))-2*sqrt(2)*sqrt(873+41*sqrt(97)-sqrt(464242+25154*sqrt(97))-2*sqrt(155685+11417*sqrt(97)-sqrt(26752018970+2526439674*sqrt(97)))))/4;

C2222=sqrt(97+5*sqrt(97)-sqrt(970-22*sqrt(97))-2*sqrt(873+77*sqrt(97)+sqrt(472778+47274*sqrt(97)))+2*sqrt(2)*sqrt(873+41*sqrt(97)-sqrt(464242+25154*sqrt(97))-2*sqrt(155685+11417*sqrt(97)-sqrt(26752018970+2526439674*sqrt(97)))))/4;

?

IV.確定三次根號(hào)內(nèi)實(shí)部理論值,計(jì)算機(jī)操作,誤差逐步增大。過(guò)大的參數(shù),利用sqrt(55193±5604*sqrt(97))降階。中間參數(shù)K化解最外層根號(hào)。

P1111=2*A1111^3-9*A1111*B1111+27*C1111; K1111=P1111^2;

P1112=2*A1112^3-9*A1112*B1112+27*C1112; K1112=P1112^2;

P1121=2*A1121^3-9*A1121*B1121+27*C1121; K1121=P1121^2;

P1122=2*A1122^3-9*A1122*B1122+27*C1122; K1122=P1122^2;

P1211=2*A1211^3-9*A1211*B1211+27*C1211; K1211=P1211^2;

P1212=2*A1212^3-9*A1212*B1212+27*C1212; K1212=P1212^2;

P1221=2*A1221^3-9*A1221*B1221+27*C1221; K1221=P1221^2;

P1222=2*A1222^3-9*A1222*B1222+27*C1222; K1222=P1222^2;

P2111=2*A2111^3-9*A2111*B2111+27*C2111; K2111=P2111^2;

P2112=2*A2112^3-9*A2112*B2112+27*C2112; K2112=P2112^2;

P2121=2*A2121^3-9*A2121*B2121+27*C2121; K2121=P2121^2;

P2122=2*A2122^3-9*A2122*B2122+27*C2122; K2122=P2122^2;

P2211=2*A2211^3-9*A2211*B2211+27*C2211; K2211=P2211^2;

P2212=2*A2212^3-9*A2212*B2212+27*C2212; K2212=P2212^2;

P2221=2*A2221^3-9*A2221*B2221+27*C2221; K2221=P2221^2;

P2222=2*A2222^3-9*A2222*B2222+27*C2222; K2222=P2222^2;

K1111+K1112 + K1121+K1122 + K1211+K1212 + K1221+K1222 + K2111+K2112 + K2121+K2122 + K2211+K2212 + K2221+K2222 = 19594;

K1111+K1112+K1121+K1122+K1211+K1212 + K1221+K1222 -( K2111+K2112 + K2121+K2122 + K2211+K2212 + K2221+K2222 )= -584*sqrt(97);

(K1111+K1112 + K1121+K1122 - (K1211+K1212 + K1221+K1222))^2 + (K2111+K2112 + K2121+K2122 -( K2211+K2212 + K2221+K2222))^2 = 119063426;

((K1111+K1112 + K1121+K1122 - (K1211+K1212 + K1221+K1222))^2 - (K2111+K2112 + K2121+K2122 -( K2211+K2212 + K2221+K2222))^2) = -6874408*sqrt(97);

(K1111+K1112 - (K1121+K1122))^2 + (K1211+K1212 - (K1221+K1222))^2 +(K2111+K2112 - (K2121+K2122))^2 + (K2211+K2212 - (K2221+K2222))^2=45563034;

(K1111+K1112 - (K1121+K1122))^2 + (K1211+K1212 - (K1221+K1222))^2 -(K2111+K2112 - (K2121+K2122))^2 - (K2211+K2212 - (K2221+K2222))^2=-4579628*sqrt(97);

((K1111+K1112 - (K1121+K1122))^2 - (K1211+K1212 - (K1221+K1222))^2)^2 +((K2111+K2112 - (K2121+K2122))^2 - (K2211+K2212 - (K2221+K2222))^2)^2 =1683585067450834;

(((K1111+K1112 - (K1121+K1122))^2 - (K1211+K1212 - (K1221+K1222))^2)^2 -((K2111+K2112 - (K2121+K2122))^2 - (K2211+K2212 - (K2221+K2222))^2)^2)/sqrt(97)=-170941752647448;

(K1111+K1112 - (K1121+K1122))^2 + (K1211+K1212 - (K1221+K1222))^2 =22781517-2289814*sqrt(97);

(K2111+K2112 - (K2121+K2122))^2 + (K2211+K2212 - (K2221+K2222))^2 =22781517+2289814*sqrt(97);

(K1111+K1112 - (K1121+K1122))^2 - (K1211+K1212 - (K1221+K1222))^2 =(-821073-70828*sqrt(97))*sqrt(55193-5604*sqrt(97));

(K2111+K2112 - (K2121+K2122))^2 - (K2211+K2212 - (K2221+K2222))^2 =(821073-70828*sqrt(97))*sqrt(55193+5604*sqrt(97));

(K1111+K1112 - (K1121+K1122))^2=(22781517-2289814*sqrt(97)-(821073+70828*sqrt(97))*sqrt(55193-5604*sqrt(97)))/2

K1111+K1112 - (K1121+K1122)=-sqrt(45563034-4579628*sqrt(97)-(1642146+141656*sqrt(97))*sqrt(55193-5604*sqrt(97)))/2;

K1111+K1112 +(K1121+K1122) =(9797 -292*sqrt(97)+sqrt(59531713-3437204*sqrt(97)))/2;

K1111+K1112=(9797-292*sqrt(97)+sqrt(59531713-3437204*sqrt(97))-sqrt(45563034-4579628*sqrt(97)-(1642146+141656*sqrt(97))*sqrt(55193-5604*sqrt(97))))/4;

(K1111-K1112)^2 + (K1121-K1122)^2 + (K1211-K1212)^2 + (K1221-K1222)^2 + (K2111-K2112)^2 + (K2121-K2122)^2 + (K2211-K2212)^2 + (K2221-K2222)^2 =54083514;

((K1111-K1112)^2+(K1121-K1122)^2+(K1211-K1212)^2+(K1221-K1222)^2-((K2111-K2112)^2+(K2121-K2122)^2+(K2211-K2212)^2 + (K2221-K2222)^2))/sqrt(97)=-1862252;

((K1111-K1112)^2+(K1121-K1122)^2-(K1211-K1212)^2-(K1221-K1222)^2)^2+((K2111-K2112)^2+(K2121-K2122)^2-(K2211-K2212)^2-(K2221-K2222)^2)^2=1330121121132050;

(((K1111-K1112)^2+(K1121-K1122)^2-(K1211-K1212)^2-(K1221-K1222)^2)^2-((K2111-K2112)^2+(K2121-K2122)^2-(K2211-K2212)^2-(K2221-K2222)^2)^2)/sqrt(97)=-70265142977992;

((K1111-K1112)^2 - (K1121-K1122)^2)^2 + ((K1211-K1212)^2 - (K1221-K1222)^2)^2 + ((K2111-K2112)^2 - (K2121-K2122)^2)^2 + ((K2211-K2212)^2 - (K2221-K2222)^2)^2 =596661915089958;

(((K1111-K1112)^2 - (K1121-K1122)^2)^2 + ((K1211-K1212)^2 - (K1221-K1222)^2)^2 - ((K2111-K2112)^2 - (K2121-K2122)^2)^2 - ((K2211-K2212)^2 - (K2221-K2222)^2)^2)/sqrt(97)=-59813233865024;

((K1111-K1112)^2-(K1121-K1122)^2)^2-((K1211-K1212)^2-(K1221-K1222)^2)^2)/sqrt(55193-5604*sqrt(97))-((K2111-K2112)^2-(K2121-K2122)^2)^2-((K2211-K2212)^2-(K2221-K2222)^2)^2)/sqrt(55193+5604*sqrt(97)) = 125926845956502;

((K1111-K1112)^2-(K1121-K1122)^2)^2-((K1211-K1212)^2-(K1221-K1222)^2)^2)/sqrt(55193-5604*sqrt(97))+((K2111-K2112)^2-(K2121-K2122)^2)^2-((K2211-K2212)^2-(K2221-K2222)^2)^2)/sqrt(55193+5604*sqrt(97))=13142350715116*sqrt(97)

((K1111-K1112)^2 - (K1121-K1122)^2)^2 + ((K1211-K1212)^2 - (K1221-K1222)^2)^2=298330957544979-29906616932512*sqrt(97);

(K1111-K1112)^2-(K1121-K1122)^2)^2-((K1211-K1212)^2-(K1221-K1222)^2)^2=(6571175357558*sqrt(97)+62963422978251)*sqrt(55193-5604*sqrt(97));

(K1111-K1112)^2-(K1121-K1122)^2=-sqrt(596661915089958-59813233865024*sqrt(97)+(125926845956502+13142350715116*sqrt(97))*sqrt(55193-5604*sqrt(97)))/2;

(K1111-K1112)^ 2 + (K1121-K1122)^2 = (27041757-931126*sqrt(97)+sqrt(665060560566025-35132571488996*sqrt(97)))/2;

K1111-K1112=-sqrt(27041757-931126*sqrt(97)+sqrt(665060560566025-35132571488996*sqrt(97))-sqrt(596661915089958-59813233865024*sqrt(97)+(125926845956502+13142350715116*sqrt(97))*sqrt(55193-5604*sqrt(97))))/2;

P1111=-sqrt(19594-584*sqrt(97)+(170918+17360*sqrt(97))*sqrt(55193-5604*sqrt(97))-2*sqrt(45563034-4579628*sqrt(97)-(1642146+141656*sqrt(97))*sqrt(55193-5604*sqrt(97)))-4*sqrt(27041757-931126*sqrt(97)+(301229863+30594976*sqrt(97))*sqrt(55193-5604*sqrt(97))-sqrt(596661915089958-59813233865024*sqrt(97)+(125926845956502+13142350715116*sqrt(97))*sqrt(55193-5604*sqrt(97)))))/4;

P1112=-sqrt(19594-584*sqrt(97)+(170918+17360*sqrt(97))*sqrt(55193-5604*sqrt(97))-2*sqrt(45563034-4579628*sqrt(97)-(1642146+141656*sqrt(97))*sqrt(55193-5604*sqrt(97)))+4*sqrt(27041757-931126*sqrt(97)+(301229863+30594976*sqrt(97))*sqrt(55193-5604*sqrt(97))-sqrt(596661915089958-59813233865024*sqrt(97)+(125926845956502+13142350715116*sqrt(97))*sqrt(55193-5604*sqrt(97)))))/4;

P1121=-sqrt(19594-584*sqrt(97)+(170918+17360*sqrt(97))*sqrt(55193-5604*sqrt(97))+2*sqrt(45563034-4579628*sqrt(97)-(1642146+141656*sqrt(97))*sqrt(55193-5604*sqrt(97)))-4*sqrt(27041757-931126*sqrt(97)+(301229863+30594976*sqrt(97))*sqrt(55193-5604*sqrt(97))+sqrt(596661915089958-59813233865024*sqrt(97)+(125926845956502+13142350715116*sqrt(97))*sqrt(55193-5604*sqrt(97)))))/4;

P1122=-sqrt(19594-584*sqrt(97)+(170918+17360*sqrt(97))*sqrt(55193-5604*sqrt(97))+2*sqrt(45563034-4579628*sqrt(97)-(1642146+141656*sqrt(97))*sqrt(55193-5604*sqrt(97)))+4*sqrt(27041757-931126*sqrt(97)+(301229863+30594976*sqrt(97))*sqrt(55193-5604*sqrt(97))+sqrt(596661915089958-59813233865024*sqrt(97)+(125926845956502+13142350715116*sqrt(97))*sqrt(55193-5604*sqrt(97)))))/4;

P1211=-sqrt(19594-584*sqrt(97)-(170918+17360*sqrt(97))*sqrt(55193-5604*sqrt(97))+2*sqrt(45563034-4579628*sqrt(97)+(1642146+141656*sqrt(97))*sqrt(55193-5604*sqrt(97)))-4*sqrt(27041757-931126*sqrt(97)-(301229863+30594976*sqrt(97))*sqrt(55193-5604*sqrt(97))+sqrt(596661915089958-59813233865024*sqrt(97)-(125926845956502+13142350715116*sqrt(97))*sqrt(55193-5604*sqrt(97)))))/4;

P1212=-sqrt(19594-584*sqrt(97)-(170918+17360*sqrt(97))*sqrt(55193-5604*sqrt(97))+2*sqrt(45563034-4579628*sqrt(97)+(1642146+141656*sqrt(97))*sqrt(55193-5604*sqrt(97)))+4*sqrt(27041757-931126*sqrt(97)-(301229863+30594976*sqrt(97))*sqrt(55193-5604*sqrt(97))+sqrt(596661915089958-59813233865024*sqrt(97)-(125926845956502+13142350715116*sqrt(97))*sqrt(55193-5604*sqrt(97)))))/4;

P1221=-sqrt(19594-584*sqrt(97)-(170918+17360*sqrt(97))*sqrt(55193-5604*sqrt(97))-2*sqrt(45563034-4579628*sqrt(97)+(1642146+141656*sqrt(97))*sqrt(55193-5604*sqrt(97)))+4*sqrt(27041757-931126*sqrt(97)-(301229863+30594976*sqrt(97))*sqrt(55193-5604*sqrt(97))-sqrt(596661915089958-59813233865024*sqrt(97)-(125926845956502+13142350715116*sqrt(97))*sqrt(55193-5604*sqrt(97)))))/4;

P1222=-sqrt(19594-584*sqrt(97)-(170918+17360*sqrt(97))*sqrt(55193-5604*sqrt(97))-2*sqrt(45563034-4579628*sqrt(97)+(1642146+141656*sqrt(97))*sqrt(55193-5604*sqrt(97)))-4*sqrt(27041757-931126*sqrt(97)-(301229863+30594976*sqrt(97))*sqrt(55193-5604*sqrt(97))-sqrt(596661915089958-59813233865024*sqrt(97)-(125926845956502+13142350715116*sqrt(97))*sqrt(55193-5604*sqrt(97)))))/4;

P2111=-sqrt(19594+584*sqrt(97)-(170918-17360*sqrt(97))*sqrt(55193+5604*sqrt(97))+2*sqrt(45563034+4579628*sqrt(97)+(1642146-141656*sqrt(97))*sqrt(55193+5604*sqrt(97)))-4*sqrt(27041757+931126*sqrt(97)-(301229863-30594976*sqrt(97))*sqrt(55193+5604*sqrt(97))+sqrt(596661915089958+59813233865024*sqrt(97)-(125926845956502-13142350715116*sqrt(97))*sqrt(55193+5604*sqrt(97)))))/4;

P2112=-sqrt(19594+584*sqrt(97)-(170918-17360*sqrt(97))*sqrt(55193+5604*sqrt(97))+2*sqrt(45563034+4579628*sqrt(97)+(1642146-141656*sqrt(97))*sqrt(55193+5604*sqrt(97)))+4*sqrt(27041757+931126*sqrt(97)-(301229863-30594976*sqrt(97))*sqrt(55193+5604*sqrt(97))+sqrt(596661915089958+59813233865024*sqrt(97)-(125926845956502-13142350715116*sqrt(97))*sqrt(55193+5604*sqrt(97)))))/4;

P2121=-sqrt(19594+584*sqrt(97)-(170918-17360*sqrt(97))*sqrt(55193+5604*sqrt(97))-2*sqrt(45563034+4579628*sqrt(97)+(1642146-141656*sqrt(97))*sqrt(55193+5604*sqrt(97)))+4*sqrt(27041757+931126*sqrt(97)-(301229863-30594976*sqrt(97))*sqrt(55193+5604*sqrt(97))-sqrt(596661915089958+59813233865024*sqrt(97)-(125926845956502-13142350715116*sqrt(97))*sqrt(55193+5604*sqrt(97)))))/4;

P2122=-sqrt(19594+584*sqrt(97)-(170918-17360*sqrt(97))*sqrt(55193+5604*sqrt(97))-2*sqrt(45563034+4579628*sqrt(97)+(1642146-141656*sqrt(97))*sqrt(55193+5604*sqrt(97)))-4*sqrt(27041757+931126*sqrt(97)-(301229863-30594976*sqrt(97))*sqrt(55193+5604*sqrt(97))-sqrt(596661915089958+59813233865024*sqrt(97)-(125926845956502-13142350715116*sqrt(97))*sqrt(55193+5604*sqrt(97)))))/4;

P2211=-sqrt(19594+584*sqrt(97)+(170918-17360*sqrt(97))*sqrt(55193+5604*sqrt(97))+2*sqrt(45563034+4579628*sqrt(97)-(1642146-141656*sqrt(97))*sqrt(55193+5604*sqrt(97)))+4*sqrt(27041757+931126*sqrt(97)+(301229863-30594976*sqrt(97))*sqrt(55193+5604*sqrt(97))+sqrt(596661915089958+59813233865024*sqrt(97)+(125926845956502-13142350715116*sqrt(97))*sqrt(55193+5604*sqrt(97)))))/4;

P2212=sqrt(19594+584*sqrt(97)+(170918-17360*sqrt(97))*sqrt(55193+5604*sqrt(97))+2*sqrt(45563034+4579628*sqrt(97)-(1642146-141656*sqrt(97))*sqrt(55193+5604*sqrt(97)))-4*sqrt(27041757+931126*sqrt(97)+(301229863-30594976*sqrt(97))*sqrt(55193+5604*sqrt(97))+sqrt(596661915089958+59813233865024*sqrt(97)+(125926845956502-13142350715116*sqrt(97))*sqrt(55193+5604*sqrt(97)))))/4;

P2221=-sqrt(19594+584*sqrt(97)+(170918-17360*sqrt(97))*sqrt(55193+5604*sqrt(97))-2*sqrt(45563034+4579628*sqrt(97)-(1642146-141656*sqrt(97))*sqrt(55193+5604*sqrt(97)))+4*sqrt(27041757+931126*sqrt(97)+(301229863-30594976*sqrt(97))*sqrt(55193+5604*sqrt(97))-sqrt(596661915089958+59813233865024*sqrt(97)+(125926845956502-13142350715116*sqrt(97))*sqrt(55193+5604*sqrt(97)))))/4;

P2222=sqrt(19594+584*sqrt(97)+(170918-17360*sqrt(97))*sqrt(55193+5604*sqrt(97))-2*sqrt(45563034+4579628*sqrt(97)-(1642146-141656*sqrt(97))*sqrt(55193+5604*sqrt(97)))-4*sqrt(27041757+931126*sqrt(97)+(301229863-30594976*sqrt(97))*sqrt(55193+5604*sqrt(97))-sqrt(596661915089958+59813233865024*sqrt(97)+(125926845956502-13142350715116*sqrt(97))*sqrt(55193+5604*sqrt(97)))))/4;

?

V.確定三次根號(hào)內(nèi)虛部。、

Q1111=A1111^2*B1111^2-27*C1111^2+18*A1111*B1111*C1111-4*A1111^3*C1111-4*B1111^3;

Q1112=A1112^2*B1112^2-27*C1112^2+18*A1112*B1112*C1112-4*A1112^3*C1112-4*B1112^3;

Q1121=A1121^2*B1121^2-27*C1121^2+18*A1121*B1121*C1121-4*A1121^3*C1121-4*B1121^3;

Q1122=A1122^2*B1122^2-27*C1122^2+18*A1122*B1122*C1122-4*A1122^3*C1122-4*B1122^3;

Q1211=A1211^2*B1211^2-27*C1211^2+18*A1211*B1211*C1211-4*A1211^3*C1211-4*B1211^3;

Q1212=A1212^2*B1212^2-27*C1212^2+18*A1212*B1212*C1212-4*A1212^3*C1212-4*B1212^3;

Q1221=A1221^2*B1221^2-27*C1221^2+18*A1221*B1221*C1221-4*A1221^3*C1221-4*B1221^3;

Q1222=A1222^2*B1222^2-27*C1222^2+18*A1222*B1222*C1222-4*A1222^3*C1222-4*B1222^3;

Q2111=A2111^2*B2111^2-27*C2111^2+18*A2111*B2111*C2111-4*A2111^3*C2111-4*B2111^3;

Q2112=A2112^2*B2112^2-27*C2112^2+18*A2112*B2112*C2112-4*A2112^3*C2112-4*B2112^3;

Q2121=A2121^2*B2121^2-27*C2121^2+18*A2121*B2121*C2121-4*A2121^3*C2121-4*B2121^3;

Q2122=A2122^2*B2122^2-27*C2122^2+18*A2122*B2122*C2122-4*A2122^3*C2122-4*B2122^3;

Q2211=A2211^2*B2211^2-27*C2211^2+18*A2211*B2211*C2211-4*A2211^3*C2211-4*B2211^3;

Q2212=A2212^2*B2212^2-27*C2212^2+18*A2212*B2212*C2212-4*A2212^3*C2212-4*B2212^3;

Q2221=A2221^2*B2221^2-27*C2221^2+18*A2221*B2221*C2221-4*A2221^3*C2221-4*B2221^3;

Q2222=A2222^2*B2222^2-27*C2222^2+18*A2222*B2222*C2222-4*A2222^3*C2222-4*B2222^3;

R1111=3*sqrt(3*Q1111)=3*sqrt(1746+108*sqrt(97)-6*sqrt(1261-88*sqrt(97))+6*sqrt(64602+5044*sqrt(97)-2*sqrt(1335982649+132853668*sqrt(97)))-12*sqrt(34241+3062*sqrt(97)-sqrt(993516001+100534468*sqrt(97))-sqrt(2991680790+301724080*sqrt(97)+(243925700-26563002*sqrt(97))*sqrt(55193+5604*sqrt(97)))))/4;

R1112=3*sqrt(3*Q1112)=3*sqrt(1746+108*sqrt(97)-6*sqrt(1261-88*sqrt(97))+6*sqrt(64602+5044*sqrt(97)-2*sqrt(1335982649+132853668*sqrt(97)))+12*sqrt(34241+3062*sqrt(97)-sqrt(993516001+100534468*sqrt(97))-sqrt(2991680790+301724080*sqrt(97)+(243925700-26563002*sqrt(97))*sqrt(55193+5604*sqrt(97)))))/4;

R1121=3*sqrt(3*Q1121)=3*sqrt(1746+108*sqrt(97)-6*sqrt(1261-88*sqrt(97))-6*sqrt(64602+5044*sqrt(97)-2*sqrt(1335982649+132853668*sqrt(97)))-12*sqrt(34241+3062*sqrt(97)-sqrt(993516001+100534468*sqrt(97))+sqrt(2991680790+301724080*sqrt(97)+(243925700-26563002*sqrt(97))*sqrt(55193+5604*sqrt(97)))))/4;

R1122=3*sqrt(3*Q1122)=3*sqrt(1746+108*sqrt(97)-6*sqrt(1261-88*sqrt(97))-6*sqrt(64602+5044*sqrt(97)-2*sqrt(1335982649+132853668*sqrt(97)))+12*sqrt(34241+3062*sqrt(97)-sqrt(993516001+100534468*sqrt(97))+sqrt(2991680790+301724080*sqrt(97)+(243925700-26563002*sqrt(97))*sqrt(55193+5604*sqrt(97)))))/4;

R1211=3*sqrt(3*Q1211)=3*sqrt(1746+108*sqrt(97)+6*sqrt(1261-88*sqrt(97))+6*sqrt(64602+5044*sqrt(97)+2*sqrt(1335982649+132853668*sqrt(97)))+12*sqrt(34241+3062*sqrt(97)+sqrt(993516001+100534468*sqrt(97))+sqrt(2991680790+301724080*sqrt(97)-(243925700-26563002*sqrt(97))*sqrt(55193+5604*sqrt(97)))))/4;

R1212=3*sqrt(3*Q1212)=3*sqrt(1746+108*sqrt(97)+6*sqrt(1261-88*sqrt(97))+6*sqrt(64602+5044*sqrt(97)+2*sqrt(1335982649+132853668*sqrt(97)))-12*sqrt(34241+3062*sqrt(97)+sqrt(993516001+100534468*sqrt(97))+sqrt(2991680790+301724080*sqrt(97)-(243925700-26563002*sqrt(97))*sqrt(55193+5604*sqrt(97)))))/4;

R1221=3*sqrt(3*Q1221)=3*sqrt(1746+108*sqrt(97)+6*sqrt(1261-88*sqrt(97))-6*sqrt(64602+5044*sqrt(97)+2*sqrt(1335982649+132853668*sqrt(97)))+12*sqrt(34241+3062*sqrt(97)+sqrt(993516001+100534468*sqrt(97))-sqrt(2991680790+301724080*sqrt(97)-(243925700-26563002*sqrt(97))*sqrt(55193+5604*sqrt(97)))))/4;

R1222=3*sqrt(3*Q1222)=3*sqrt(1746+108*sqrt(97)+6*sqrt(1261-88*sqrt(97))-6*sqrt(64602+5044*sqrt(97)+2*sqrt(1335982649+132853668*sqrt(97)))-12*sqrt(34241+3062*sqrt(97)+sqrt(993516001+100534468*sqrt(97))-sqrt(2991680790+301724080*sqrt(97)-(243925700-26563002*sqrt(97))*sqrt(55193+5604*sqrt(97)))))/4;

R2111=3*sqrt(3*Q2111)=3*sqrt(1746-108*sqrt(97)+6*sqrt(1261+88*sqrt(97))+6*sqrt(64602-5044*sqrt(97)+2*sqrt(1335982649-132853668*sqrt(97)))+12*sqrt(34241-3062*sqrt(97)+sqrt(993516001-100534468*sqrt(97))+sqrt(2991680790-301724080*sqrt(97)+(243925700+26563002*sqrt(97))*sqrt(55193-5604*sqrt(97)))))/4;

R2112=3*sqrt(3*Q2112)=3*sqrt(1746-108*sqrt(97)+6*sqrt(1261+88*sqrt(97))+6*sqrt(64602-5044*sqrt(97)+2*sqrt(1335982649-132853668*sqrt(97)))-12*sqrt(34241-3062*sqrt(97)+sqrt(993516001-100534468*sqrt(97))+sqrt(2991680790-301724080*sqrt(97)+(243925700+26563002*sqrt(97))*sqrt(55193-5604*sqrt(97)))))/4;

R2121=3*sqrt(3*Q2121)=3*sqrt(1746-108*sqrt(97)+6*sqrt(1261+88*sqrt(97))-6*sqrt(64602-5044*sqrt(97)+2*sqrt(1335982649-132853668*sqrt(97)))+12*sqrt(34241-3062*sqrt(97)+sqrt(993516001-100534468*sqrt(97))-sqrt(2991680790-301724080*sqrt(97)+(243925700+26563002*sqrt(97))*sqrt(55193-5604*sqrt(97)))))/4;

R2122=3*sqrt(3*Q2122)=3*sqrt(1746-108*sqrt(97)+6*sqrt(1261+88*sqrt(97))-6*sqrt(64602-5044*sqrt(97)+2*sqrt(1335982649-132853668*sqrt(97)))-12*sqrt(34241-3062*sqrt(97)+sqrt(993516001-100534468*sqrt(97))-sqrt(2991680790-301724080*sqrt(97)+(243925700+26563002*sqrt(97))*sqrt(55193-5604*sqrt(97)))))/4;

R2211=3*sqrt(3*Q2211)=3*sqrt(1746-108*sqrt(97)-6*sqrt(1261+88*sqrt(97))+6*sqrt(64602-5044*sqrt(97)-2*sqrt(1335982649-132853668*sqrt(97)))+12*sqrt(34241-3062*sqrt(97)-sqrt(993516001-100534468*sqrt(97))+sqrt(2991680790-301724080*sqrt(97)-(243925700+26563002*sqrt(97))*sqrt(55193-5604*sqrt(97)))))/4;

R2212=3*sqrt(3*Q2212)=3*sqrt(1746-108*sqrt(97)-6*sqrt(1261+88*sqrt(97))+6*sqrt(64602-5044*sqrt(97)-2*sqrt(1335982649-132853668*sqrt(97)))-12*sqrt(34241-3062*sqrt(97)-sqrt(993516001-100534468*sqrt(97))+sqrt(2991680790-301724080*sqrt(97)-(243925700+26563002*sqrt(97))*sqrt(55193-5604*sqrt(97)))))/4;

R2221=3*sqrt(3*Q2221)=3*sqrt(1746-108*sqrt(97)-6*sqrt(1261+88*sqrt(97))-6*sqrt(64602-5044*sqrt(97)-2*sqrt(1335982649-132853668*sqrt(97)))+12*sqrt(34241-3062*sqrt(97)-sqrt(993516001-100534468*sqrt(97))-sqrt(2991680790-301724080*sqrt(97)-(243925700+26563002*sqrt(97))*sqrt(55193-5604*sqrt(97)))))/4;

R2222=3*sqrt(3*Q2222)=3*sqrt(1746-108*sqrt(97)-6*sqrt(1261+88*sqrt(97))-6*sqrt(64602-5044*sqrt(97)-2*sqrt(1335982649-132853668*sqrt(97)))-12*sqrt(34241-3062*sqrt(97)-sqrt(993516001-100534468*sqrt(97))-sqrt(2991680790-301724080*sqrt(97)-(243925700+26563002*sqrt(97))*sqrt(55193-5604*sqrt(97)))))/4;

?

sin(2*k*pi/97)=(A+f1*((P+R*j)/2)^(1/3)+f2*((P+R*j)/2)^(1/3))/6.其中A, P, R是有16個(gè)下標(biāo)只用加減乘除平方根號(hào)表示的實(shí)數(shù)且已經(jīng)寫(xiě)明,下標(biāo)一致且與正整數(shù)k值相關(guān),三個(gè)k值對(duì)應(yīng)一個(gè)A, P, R。f1,f2是三次單位根(包含1)且f1*f2=1,與k值相關(guān)。確定A, P, R可知道((P+R*j)/2)^1/3的輻角和模長(zhǎng)。輻角可以加或減120度,使得((P+R*j)/2)^1/3的模在實(shí)軸的投影有三個(gè)值,這三種情況分別對(duì)應(yīng)同一A, P, R情形下3個(gè)不同的k值。例如:

sin(2*pi/97)=(sqrt(97-5*sqrt(97)-sqrt(970+22*sqrt(97))-2*sqrt(873-77*sqrt(97)-sqrt(472778-47274*sqrt(97)))-2*sqrt(2)*sqrt(873-41*sqrt(97)-sqrt(464242-25154*sqrt(97))-2*sqrt(155685-11417*sqrt(97)-sqrt(26752018970-2526439674*sqrt(97)))))-(1+sqrt(-3))*(-sqrt(19594-584*sqrt(97)+(170918+17360*sqrt(97))*sqrt(55193-5604*sqrt(97))-2*sqrt(45563034-4579628*sqrt(97)-(1642146+141656*sqrt(97))*sqrt(55193-5604*sqrt(97)))-4*sqrt(27041757-931126*sqrt(97)+(301229863+30594976*sqrt(97))*sqrt(55193-5604*sqrt(97))-sqrt(596661915089958-59813233865024*sqrt(97)+(125926845956502+13142350715116*sqrt(97))*sqrt(55193-5604*sqrt(97)))))+j*3*sqrt(1746+108*sqrt(97)-6*sqrt(1261-88*sqrt(97))+6*sqrt(64602+5044*sqrt(97)-2*sqrt(1335982649+132853668*sqrt(97)))-12*sqrt(34241+3062*sqrt(97)-sqrt(993516001+100534468*sqrt(97))-sqrt(2991680790+301724080*sqrt(97)+(243925700-26563002*sqrt(97))*sqrt(55193+5604*sqrt(97))))))^(1/3)-(1-sqrt(-3))*(-sqrt(19594-584*sqrt(97)+(170918+17360*sqrt(97))*sqrt(55193-5604*sqrt(97))-2*sqrt(45563034-4579628*sqrt(97)-(1642146+141656*sqrt(97))*sqrt(55193-5604*sqrt(97)))-4*sqrt(27041757-931126*sqrt(97)+(301229863+30594976*sqrt(97))*sqrt(55193-5604*sqrt(97))-sqrt(596661915089958-59813233865024*sqrt(97)+(125926845956502+13142350715116*sqrt(97))*sqrt(55193-5604*sqrt(97)))))-j*3*sqrt(1746+108*sqrt(97)-6*sqrt(1261-88*sqrt(97))+6*sqrt(64602+5044*sqrt(97)-2*sqrt(1335982649+132853668*sqrt(97)))-12*sqrt(34241+3062*sqrt(97)-sqrt(993516001+100534468*sqrt(97))-sqrt(2991680790+301724080*sqrt(97)+(243925700-26563002*sqrt(97))*sqrt(55193+5604*sqrt(97))))))^(1/3))/24;

?

sin(70*pi/97)=(sqrt(97-5*sqrt(97)-sqrt(970+22*sqrt(97))-2*sqrt(873-77*sqrt(97)-sqrt(472778-47274*sqrt(97)))-2*sqrt(2)*sqrt(873-41*sqrt(97)-sqrt(464242-25154*sqrt(97))-2*sqrt(155685-11417*sqrt(97)-sqrt(26752018970-2526439674*sqrt(97)))))+2*(-sqrt(19594-584*sqrt(97)+(170918+17360*sqrt(97))*sqrt(55193-5604*sqrt(97))-2*sqrt(45563034-4579628*sqrt(97)-(1642146+141656*sqrt(97))*sqrt(55193-5604*sqrt(97)))-4*sqrt(27041757-931126*sqrt(97)+(301229863+30594976*sqrt(97))*sqrt(55193-5604*sqrt(97))-sqrt(596661915089958-59813233865024*sqrt(97)+(125926845956502+13142350715116*sqrt(97))*sqrt(55193-5604*sqrt(97)))))+j*3*sqrt(1746+108*sqrt(97)-6*sqrt(1261-88*sqrt(97))+6*sqrt(64602+5044*sqrt(97)-2*sqrt(1335982649+132853668*sqrt(97)))-12*sqrt(34241+3062*sqrt(97)-sqrt(993516001+100534468*sqrt(97))-sqrt(2991680790+301724080*sqrt(97)+(243925700-26563002*sqrt(97))*sqrt(55193+5604*sqrt(97))))))^(1/3)+2*(-sqrt(19594-584*sqrt(97)+(170918+17360*sqrt(97))*sqrt(55193-5604*sqrt(97))-2*sqrt(45563034-4579628*sqrt(97)-(1642146+141656*sqrt(97))*sqrt(55193-5604*sqrt(97)))-4*sqrt(27041757-931126*sqrt(97)+(301229863+30594976*sqrt(97))*sqrt(55193-5604*sqrt(97))-sqrt(596661915089958-59813233865024*sqrt(97)+(125926845956502+13142350715116*sqrt(97))*sqrt(55193-5604*sqrt(97)))))-j*3*sqrt(1746+108*sqrt(97)-6*sqrt(1261-88*sqrt(97))+6*sqrt(64602+5044*sqrt(97)-2*sqrt(1335982649+132853668*sqrt(97)))-12*sqrt(34241+3062*sqrt(97)-sqrt(993516001+100534468*sqrt(97))-sqrt(2991680790+301724080*sqrt(97)+(243925700-26563002*sqrt(97))*sqrt(55193+5604*sqrt(97))))))^(1/3))/24;

?

sin(70*pi/97)=(sqrt(97-5*sqrt(97)-sqrt(970+22*sqrt(97))-2*sqrt(873-77*sqrt(97)-sqrt(472778-47274*sqrt(97)))-2*sqrt(2)*sqrt(873-41*sqrt(97)-sqrt(464242-25154*sqrt(97))-2*sqrt(155685-11417*sqrt(97)-sqrt(26752018970-2526439674*sqrt(97)))))-(1-sqrt(-3))*(-sqrt(19594-584*sqrt(97)+(170918+17360*sqrt(97))*sqrt(55193-5604*sqrt(97))-2*sqrt(45563034-4579628*sqrt(97)-(1642146+141656*sqrt(97))*sqrt(55193-5604*sqrt(97)))-4*sqrt(27041757-931126*sqrt(97)+(301229863+30594976*sqrt(97))*sqrt(55193-5604*sqrt(97))-sqrt(596661915089958-59813233865024*sqrt(97)+(125926845956502+13142350715116*sqrt(97))*sqrt(55193-5604*sqrt(97)))))+j*3*sqrt(1746+108*sqrt(97)-6*sqrt(1261-88*sqrt(97))+6*sqrt(64602+5044*sqrt(97)-2*sqrt(1335982649+132853668*sqrt(97)))-12*sqrt(34241+3062*sqrt(97)-sqrt(993516001+100534468*sqrt(97))-sqrt(2991680790+301724080*sqrt(97)+(243925700-26563002*sqrt(97))*sqrt(55193+5604*sqrt(97))))))^(1/3)-(1+sqrt(-3))*(-sqrt(19594-584*sqrt(97)+(170918+17360*sqrt(97))*sqrt(55193-5604*sqrt(97))-2*sqrt(45563034-4579628*sqrt(97)-(1642146+141656*sqrt(97))*sqrt(55193-5604*sqrt(97)))-4*sqrt(27041757-931126*sqrt(97)+(301229863+30594976*sqrt(97))*sqrt(55193-5604*sqrt(97))-sqrt(596661915089958-59813233865024*sqrt(97)+(125926845956502+13142350715116*sqrt(97))*sqrt(55193-5604*sqrt(97)))))-j*3*sqrt(1746+108*sqrt(97)-6*sqrt(1261-88*sqrt(97))+6*sqrt(64602+5044*sqrt(97)-2*sqrt(1335982649+132853668*sqrt(97)))-12*sqrt(34241+3062*sqrt(97)-sqrt(993516001+100534468*sqrt(97))-sqrt(2991680790+301724080*sqrt(97)+(243925700-26563002*sqrt(97))*sqrt(55193+5604*sqrt(97))))))^(1/3))/24;

?

97邊形-(一)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
通海县| 如皋市| 禄劝| 九龙坡区| 新晃| 泸定县| 赤水市| 阳江市| 建水县| 菏泽市| 枣阳市| 青海省| 田阳县| 洪江市| 弥渡县| 海安县| 姚安县| 库尔勒市| 寿阳县| 遵义市| 清徐县| 修水县| 屏东县| 青岛市| 会理县| 集贤县| 大埔县| 康保县| 荣成市| 施秉县| 民和| 同江市| 茶陵县| 上虞市| 花垣县| 元谋县| 绥宁县| 皮山县| 阿荣旗| 安徽省| 临朐县|