最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

對(duì)數(shù)(指數(shù))平均不等式·證明過程

2023-04-01 02:37 作者:明月星塵ST  | 我要投稿

??對(duì)數(shù)平均不等式:對(duì)于兩個(gè)正數(shù)a和b且a%5Cneq%20b,我們有%5Csqrt%7Bab%7D<e%5Em<%5Cfrac%7Ba%2Bb%7D%7B2%7D%20,下面我們來(lái)證明

我們先證%5Cfrac%7Ba%2Bb%7D%7B%5Cln%20a%20-%5Cln%20b%20%20%7D%20%3C%5Cfrac%7Ba%2Bb%7D%7B2%7D%20

因?yàn)閍,b均大于0

我們不妨設(shè)b>a

此時(shí)要證%5Cfrac%7Ba%2Bb%7D%7B%5Cln%20a%20-%5Cln%20b%20%20%7D%20%3C%5Cfrac%7Ba%2Bb%7D%7B2%7D%20成立,即證%5Cfrac%7B%5Cfrac%7Ba%7D%7Bb%7D-1%20%7D%7B%5Cln%20%5Cfrac%7Ba%7D%7Bb%7D%20%20%7D%20%3C%5Cfrac%7B%5Cfrac%7Ba%7D%7Bb%7D%2B1%20%7D%7B2%7D%20成立

此時(shí)有0%3C%5Cfrac%7Ba%7D%7Bb%7D%20%3C1

那么上式可化為2(%5Cfrac%7Ba%7D%7Bb%7D%20-1)%3E%5Cln%20%5Cfrac%7Ba%7D%7Bb%7D%20%20(%5Cfrac%7Ba%7D%7Bb%7D%20%2B1)

%5Cimplies%202(%5Cfrac%7Ba%7D%7Bb%7D%20-1)-%5Cln%20%5Cfrac%7Ba%7D%7Bb%7D%20%20(%5Cfrac%7Ba%7D%7Bb%7D%20%2B1)%3E0

令x=%5Cfrac%7Ba%7D%7Bb%7D%20?(0<x<1)

則上式可化為2(x-1)-%5Cln%20x%20(x%2B1)%3E0

此時(shí)要證%5Cfrac%7Ba%2Bb%7D%7B%5Cln%20a%20-%5Cln%20b%20%20%7D%20%3C%5Cfrac%7Ba%2Bb%7D%7B2%7D%20成立,即證2(x-1)-%5Cln%20x%20(x%2B1)%3E0成立

g(x)%3D2(x-1)-%5Cln%20x%20(x%2B1)

g'(x)=1-%5Cln%20x%20-%5Cfrac1x

即g'(x)=%5Cfrac%7Bx-x%5Cln%20x%20-1%7D%7Bx%7D%20

令h(x)=-x-x%5Cln%20x%20-1

顯然g'(x)與h(x)的增減區(qū)間相同

那么h'(x)=-%5Cln%20x%20

因?yàn)楫?dāng)x%5Cin%20(0%2C1)時(shí),-%5Cln%20x%20%3E0

即有當(dāng)x%5Cin%20(0%2C1)時(shí),h'(x)%3E0

此時(shí)h(x)在(0,1)上單調(diào)遞增

所以有h(x)<h(1)? ?(0<x<1)

所以有g(shù)'(x)<g'(1)? (o<x<1)

由g'(x)=1-%5Cln%20x%20-%5Cfrac1x,得g'(1)=0

所以有g(shù)'(x)<0? ?(0<x<1)

所以g(x)在(0,1)上單調(diào)遞減

所以有g(shù)(x)>g(1)? (0<x<1)

因?yàn)橛?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=g(x)%3D2(x-1)-%5Cln%20x%20(x%2B1)" alt="g(x)%3D2(x-1)-%5Cln%20x%20(x%2B1)"/>,知g(1)=0

所以g(x)>0 (0<x<1)

所以2(x-1)-%5Cln%20x%20(x%2B1)%3E0?(0<x<1)得證

所以%5Cfrac%7Ba%2Bb%7D%7B%5Cln%20a%20-%5Cln%20b%20%20%7D%20%3C%5Cfrac%7Ba%2Bb%7D%7B2%7D%20(a,b>0且a%5Cneq%20b)得證

接下來(lái)我們證%5Csqrt%7Bab%7D%20%3C%5Cfrac%7Ba-b%7D%7B%5Cln%20a%20-%5Cln%20b%20%7D%20

因?yàn)閍,b均大于0

我們不妨設(shè)b>a

則原命題可化為%5Csqrt%7B%5Cfrac%7Ba%7D%7Bb%7D%20%7D%20%3C%5Cfrac%7B%5Cfrac%7Ba%7D%7Bb%7D-1%20%7D%7B%5Cln%20%5Cfrac%7Ba%7D%7Bb%7D%20%20%7D%20

%5Cimplies%20%5Cfrac%7Ba%7D%7Bb%7D%20-%5Csqrt%7B%5Cfrac%7Ba%7D%7Bb%7D%20%7D%20%5Cln%20%5Cfrac%7Ba%7D%7Bb%7D%20%20-1%3C0

令x=%5Csqrt%7B%5Cfrac%7Ba%7D%7Bb%7D%20%7D%20?(0<x<1)

則有x%5E2%20-x%5Cln%20x%5E2%20%20-1%3C0

此時(shí)要證原命題成立,即證上式成立即可

設(shè)m(x)%3Dx%5E2%20-2x%5Cln%20x%20-1

m'(x)%3D2x-2%5Cln%20x%20-2

m''(x)%3D%5Cfrac%7B2(x-1)%7D%7Bx%7D%20

顯然當(dāng)x%5Cin%20(0%2C1)時(shí),m''(x)<0

所以m'(x)在(0,1)上單調(diào)遞減

所以此時(shí)m'(x)>m'(1),因?yàn)閙'(1)=0

即有m'(x)>0

此時(shí)有m(x)在(0,1)上單調(diào)遞增

此時(shí)m(x)<m(1)

因?yàn)閙(1)=0

所以此時(shí)g(x)<0

x%5E2%20-x%5Cln%20x%5E2%20%20-1%3C0

所以%5Csqrt%7Bab%7D%20%3C%5Cfrac%7Ba-b%7D%7B%5Cln%20a%20-%5Cln%20b%20%7D%20(a,b大于0且a不等于b)得證

至此對(duì)數(shù)平均不等式的證明完畢,接下來(lái)我們來(lái)證明指數(shù)平均不等式

對(duì)于任意實(shí)數(shù)m,n(m%5Cneq%20n),有e%5E%5Cfrac%7Bm%2Bn%7D%7B2%7D%20%20%3C%5Cfrac%7Be%5Em%20-e%5En%20%7D%7Bm-n%7D%20%3C%5Cfrac%7B%20e%5Em%20%2Be%5En%20%7D%7B2%7D%20


其實(shí)此時(shí)由對(duì)數(shù)平均不等式%5Csqrt%7Bab%7D<%5Cfrac%7Ba-b%7D%7B%5Cln%20a%20-%20%5Cln%20b%20%7D%20<%5Cfrac%7Ba%2Bb%7D%7B2%7D%20(a,b>0且a%5Cneq%20b)中a取e%5Em%20,b取e%5En%20,即可得到指數(shù)平均不等式

感謝大家觀看,如有錯(cuò)誤還望指出

對(duì)數(shù)(指數(shù))平均不等式·證明過程的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
丰顺县| 巩留县| 东源县| 锡林浩特市| 滁州市| 忻州市| 昌吉市| 麦盖提县| 丹凤县| 丹寨县| 龙山县| 临泉县| 延津县| 溧阳市| 荣成市| 新乐市| 武隆县| 文成县| 池州市| 佛山市| 保德县| 开平市| 梅河口市| 平阳县| 和平县| 天柱县| 方正县| 磴口县| 涟源市| 健康| 星子县| 永新县| 姜堰市| 五原县| 娄烦县| 信宜市| 曲水县| 彩票| 友谊县| 定襄县| 泾川县|