視頻 BV1wU4y1Y7UG 提到的定理 證明
cos2θ1sin2θ2
=(1-sin2θ1)sin2θ2
=cos2θ1(1-cos2θ2)
即
sin2θ2-sin2θ1sin2θ2
=cos2θ1-cos2θ1cos2θ2
即
sin2θ1+sin2θ2-sin2θ1sin2θ2
=sin2θ1+cos2θ1-cos2θ1cos2θ2
即
sin2θ1+sin2θ2-sin2θ1sin2θ2
=1-cos2θ1cos2θ2
即
(sin2θ1+sin2θ2-sin2θ1sin2θ2)
/(sin2θ1sin2θ2)
=(1-cos2θ1cos2θ2)
/(sin2θ1sin2θ2)
即
(sin2θ1+sin2θ2)/(sin2θ1sin2θ2)-1
=1/(sin2θ1sin2θ2)-1/(tan2θ1tan2θ2)
即
(sin2θ1+sin2θ2)/(sin2θ1sin2θ2)-1
-2/(tanθ1tanθ2)cosα-cos2θ)
=1/(sin2θ1sin2θ2)-1/(tan2θ1tan2θ2)
-2/(tanθ1tanθ2)cosα-cos2θ)
即
(sin2θ1+sin2θ2)/(sin2θ1sin2θ2)-1
-2/(tanθ1tanθ2)cosα-cos2θ
=1/(sin2θ1sin2θ2)
-(1/(tanθ1tanθ2)+cosα)2
即
(sin2θ1+sin2θ2)/(sin2θ1sin2θ2)-1
-2cosθ1cosθ2/(sinθ1sinθ2)cosα-cos2θ
=1/(sin2θ1sin2θ2)
-(1/(tanθ1tanθ2)+cosα)2
即
(sin2θ1+sin2θ2)/(sin2θ1sin2θ2)-1
-2√(cos2θ1cos2θ2/(sin2θ1sin2θ2))cosα-cos2θ
=1/(sin2θ1sin2θ2)
-(1/(tanθ1tanθ2)+cosα)2
即
(sin2θ1+sin2θ2)/(sin2θ1sin2θ2)-1
-2√((1-sin2θ1)(1-sin2θ2)/(sin2θ1sin2θ2))cosα-cos2θ
=1/(sin2θ1sin2θ2)
-(1/(tanθ1tanθ2)+cosα)2
即
1/sin2θ1+1/sin2θ2-2
-2√((1/sin2θ1-1)(1/sin2θ2-1))cosα+sin2α
=1/(sin2θ1sin2θ2)
-(1/(tanθ1tanθ2)+cosα)2
即
a2/sin2α
(1/sin2θ1+1/sin2θ2-2
-2√((1/sin2θ1-1)(1/sin2θ2-1))cosα+sin2α)
=a2/sin2α
(1/(sin2θ1sin2θ2)
-(1/(tanθ1tanθ2)+cosα)2)
即
(a2/sin2θ1+a2/sin2θ2-2a2
-2√((a2/sin2θ1-a2)(a2/sin2θ2-a2))cosα)/sin2α+a2
=a2/sin2α
(1/(sin2θ1sin2θ2)
-(1/(tanθ1tanθ2)+cosα)2)
即
R2
=((2a/(2sinθ1))2-a2+(2a/(2sinθ2))2-a2
-2√(((2a/(2sinθ1))2-a2)(2a/(2sinθ2))2-a2))cosα)/sin2α+a2
=a2/sin2α
(1/(sin2θ1sin2θ2)
-(1/(tanθ1tanθ2)+cosα)2)
即
R
=a/sinα
√(1/(sinθ1sinθ2)2
-(1/(tanθ1tanθ2)+cosα)2)
得證