盤點高中數(shù)學(xué)有價值的二級結(jié)論!別學(xué)沒用的!【必修篇】

函數(shù)奇偶性的四則運算推導(dǎo)
設(shè)f(x)、g(x)為奇函數(shù),有
-f(x)=f(-x),-g(x)=f(-x)
設(shè)F(x),G(x)為偶函數(shù),有
F(-x)=F(x),G(-x)=G(x),則
- 奇函數(shù)+奇函數(shù)
令h(x)=f(x)+g(x),有
h(-x)=f(-x)+g(-x)
=-f(x)+[-g(x)]
=-f(x)-g(x)=-[f(x)+g(x)]=-h(x)
h(-x)=-h(x),為奇函數(shù)
- 奇函數(shù)-奇函數(shù)
c(x)=f(x)-g(x)
c(-x)=f(-x)-g(-x)
=-f(x)-[-g(x)]
=-f(x)+g(x)
=-[f(x)-g(x)]
c(-x)=-c(x),為奇函數(shù)
- 奇函數(shù)*奇函數(shù)
z(x)=f(x)*g(x)
z(-x)=f(-x)*g(-x)
=-f(x)*[-g(x)]
=f(x)*g(x)
z(x)=z(-x),為偶函數(shù)
- 奇函數(shù)/奇函數(shù)
d(x)=f(x)/g(x)(g(x)≠0)
d(-x)=f(-x)/g(-x)
=-f(x)/[-g(x)]
=f(x)/g(x)
d(x)=d(-x),為偶函數(shù)
- 綜上奇函數(shù)±奇函數(shù)=奇函數(shù)
奇函數(shù)*奇函數(shù)=偶函數(shù)
奇函數(shù)/奇函數(shù)=偶函數(shù)(為分母的奇函數(shù)不等于零)
- 偶函數(shù)+偶函數(shù)
e(x)=F(x)+G(x)
e(-x)=F(-x)+G(-x)
=F(x)+G(x)
e(x)=e(-x),為偶函數(shù)
- 偶函數(shù)-偶函數(shù)
m(x)=F(x)-G(x)
m(-x)=F(-x)-G(-x)
=F(x)-G(x),為偶函數(shù)
- 偶函數(shù)*偶函數(shù)
n(x)=F(x)*G(x)
n(-x)=F(-x)*G(-x)
=F(x)*G(x),為偶函數(shù)
- 偶函數(shù)/偶函數(shù)
q(x)=F(x)/G(x),G(x)≠0
q(-x)=F(-x)/G(x)
=F(x)/G(x),為偶函數(shù)
綜上,兩偶函數(shù)的四則運算均為偶函數(shù)
- 奇函數(shù)+偶函數(shù)
p(x)=f(x)+F(x)
p(-x)=f(-x)+F(-x)
=-f(x)+F(x)=-[f(x)-F(x)]
p(-x)≠p(x),p(-x)≠-p(x)為非奇非偶函數(shù)
- 奇函數(shù)-偶函數(shù)
o(x)=f(x)-F(x)
o(-x)=f(-x)-F(-x)
=-f(x)-F(x)=-[f(x)+F(x)],為非奇非偶函數(shù)
- 偶函數(shù)-奇函數(shù)
r(x)=F(x)-f(x)
r(-x)=F(-x)-f(-x)
=F(x)+f(x),為非奇非偶函數(shù)
- 奇函數(shù)*偶函數(shù)
s(x)=f(x)*F(x)
s(-x)=f(-x)*F(-x)
=-f(x)*F(x)
s(-x)=-s(x),為奇函數(shù)
- 奇函數(shù)/偶函數(shù)
t(x)=f(x)*F(x),F(xiàn)(x)≠0
t(-x)=f(-x)*F(-x)
=-f(x)*F(x)
t(-x)=-t(x),為奇函數(shù)
同理偶函數(shù)/奇函數(shù)也為奇函數(shù)