最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

完整推導(dǎo)導(dǎo)數(shù)公式體系(1)

2022-02-05 09:08 作者:匆匆-cc  | 我要投稿

模塊零:一些工具

????????工具一:導(dǎo)數(shù)的定義。

f'(x)%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7Bf(x%2B%5CDelta%20x)-f(x)%7D%7B%5CDelta%20x%7D%20

????????工具二:兩個(gè)重要極限

%5Clim_%7Bx%5Cto0%7D%20%5Cfrac%7B%5Csin%20x%7D%7Bx%7D%20%3D1

%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%20%3De

????????第一個(gè)極限證明:

????????????高中推導(dǎo)過(guò),在(0%2C%5Cfrac%7B%5Cpi%7D%7B2%7D)上有

%5Csin%20x%3Cx%3C%5Ctan%20x

????????????事實(shí)上,我們有

????????????推導(dǎo)1:考察三角函數(shù)線,在單位圓中,我們會(huì)發(fā)現(xiàn),正弦線%5Cvec%7BDA%7D的大小隨著角度逐漸減小會(huì)逐漸接近于弧長(zhǎng),這表明:%5Csin%20x%20%5Csim%20x。

????????????推導(dǎo)2:考察圖形面積,

S_%7B%5Ctriangle%20AOC%7D%3D%5Cfrac%7B1%7D%7B2%7DAD%5Ccdot%20OC%3D%5Cfrac%7B1%7D%7B2%7D%5Csin%20x%5Ccdot%201%3D%5Cfrac%7B1%7D%7B2%7D%5Csin%20x

S_%7B%E6%89%87AOC%7D%3D%5Cfrac%7B1%7D%7B2%7Dx%5Ccdot%201%5E2%3D%5Cfrac%7B1%7D%7B2%7Dx

S_%7B%5Ctriangle%20BOC%7D%3D%5Cfrac%7B1%7D%7B2%7DBC%5Ccdot%20OC%3D%5Cfrac%7B1%7D%7B2%7D%5Ctan%20x%5Ccdot%201%3D%5Cfrac%7B1%7D%7B2%7D%5Ctan%20x

????????????注意到

S_%7B%5Ctriangle%20AOC%7D%3CS_%7B%E6%89%87AOC%7D%3CS_%7B%5Ctriangle%20BOC%7D

????????????所以

%5Csin%20x%3Cx%3C%5Ctan%20x

????????????考慮到當(dāng)角度越來(lái)越小時(shí),扇形的面積越來(lái)越接近于三角形AOC的面積。所以有%5Csin%20x%20%5Csim%20x。

????## 圖為%5Ccolor%7Bgray%7D%7B%5Cfrac%7B%5Csin%20x%7D%7Bx%7D%7D圖像

????????第二個(gè)極限證明:

????????????關(guān)于%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En的單調(diào)性可參考下面鏈接。

????????????鏈接中直接給出該式的極限是e,下面補(bǔ)充n%5Cto%20%2B%5Cinfty對(duì)其上界的證明。

????????????根據(jù)牛頓二項(xiàng)式定理,當(dāng)n為正整數(shù)時(shí),我們有

%5Cbegin%7Balign%7D%0A%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%0A%26%3D1%2B%5Cfrac%7Bn%7D%7B1!%7D%5Ccdot%5Cfrac%7B1%7D%7Bn%7D%2B%5Cfrac%7Bn(n-1)%7D%7B2!%7D%5Ccdot%5Cfrac%7B1%7D%7Bn%5E2%7D%2B%5Cfrac%7Bn(n-1)(n-2)%7D%7B3!%7D%5Ccdot%5Cfrac%7B1%7D%7Bn%5E3%7D%2B%E2%80%A6%2B%5Cfrac%7Bn(n-1)%E2%80%A6(n-n%2B1)%7D%7Bn!%7D%5Ccdot%5Cfrac%7B1%7D%7Bn%5En%7D%0A%5C%5C%26%3D1%2B1%2B%5Cfrac%7B1%7D%7B2!%7D%5Cleft(1-%5Cfrac%7B1%7D%7Bn%7D%5Cright)%2B%5Cfrac%7B1%7D%7B3!%7D%5Cleft(1-%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5Cleft(1-%5Cfrac%7B2%7D%7Bn%7D%5Cright)%2B%E2%80%A6%2B%5Cfrac%7B1%7D%7Bn!%7D%5Cleft(1-%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5Cleft(1-%5Cfrac%7B2%7D%7Bn%7D%5Cright)%E2%80%A6%5Cleft(1-%5Cfrac%7Bn-1%7D%7Bn%7D%5Cright)%0A%5C%5C%26%3C1%2B1%2B%5Cfrac%7B1%7D%7B2!%7D%2B%5Cfrac%7B1%7D%7B3!%7D%2B%E2%80%A6%2B%5Cfrac%7B1%7D%7Bn!%7D%0A%5C%5C%26%5Cleq%201%2B%5Cleft(1%2B%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B2%5E2%7D%2B%E2%80%A6%2B%5Cfrac%7B1%7D%7B2%5E%7Bn-1%7D%7D%5Cright)%0A%5C%5C%26%3D1%2B%5Cfrac%7B1-%5Cfrac%7B1%7D%7B2%5En%7D%7D%7B1-%5Cfrac%7B1%7D%7B2%7D%7D%0A%5C%5C%26%3D3-%5Cfrac%7B1%7D%7B2%5E%7Bn-1%7D%7D%0A%5C%5C%26%3C3%0A%5Cend%7Balign%7D

????????????所以該式有上界。

????????????根據(jù)單調(diào)有界數(shù)列必有極限得到,該式有極限。

????????????我們用字母e來(lái)表示該極限。(當(dāng)然其實(shí)到這里e還是沒有算出來(lái),但是仍然可以通過(guò)泰勒級(jí)數(shù)展開來(lái)計(jì)算,因?yàn)檫@時(shí)我們已經(jīng)承認(rèn)了%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%20%3De

????????????## 其實(shí)這一切都可以通過(guò)%5Ccolor%7Bgray%7De的泰勒展開來(lái)說(shuō)明,但是從嚴(yán)謹(jǐn)性的角度來(lái)說(shuō),此時(shí)不應(yīng)該出現(xiàn)泰勒展開,因此這里采用了%5Ccolor%7Bgray%7D%7Bn%7D為正整數(shù)時(shí)的牛頓二項(xiàng)式定理展開。

????????????另外,還有一個(gè)常用的等價(jià)無(wú)窮小

%5Cbegin%7Balign%7D%0A%5Clim_%7Bx%5Cto0%7D%5Cfrac%7B%5Csqrt%5Bn%5D%7B1%2Bx%7D-1%7D%7B%5Cfrac%7B1%7D%7Bn%7Dx%7D%26%3D%5Clim_%7Bx%5Cto0%7D%5Cfrac%7B(%5Csqrt%5Bn%5D%7B1%2Bx%7D)%5En-1%7D%7B%5Cfrac%7B1%7D%7Bn%7Dx%5B%5Csqrt%5Bn%5D%7B(1%2Bx)%5E%7Bn-1%7D%7D%2B%5Csqrt%5Bn%5D%7B(1%2Bx)%5E%7Bn-2%7D%7D%2B%E2%80%A6%2B1%5D%7D%0A%5C%5C%26%3D%5Clim_%7Bx%5Cto0%7D%5Cfrac%7Bn%7D%7B%5Csqrt%5Bn%5D%7B(1%2Bx)%5E%7Bn-1%7D%7D%2B%5Csqrt%5Bn%5D%7B(1%2Bx)%5E%7Bn-2%7D%7D%2B%E2%80%A6%2B1%7D%0A%5C%5C%26%3D%5Cfrac%7Bn%7D%7Bn%7D%0A%5C%5C%26%3D1%0A%5Cend%7Balign%7D

????????工具三:函數(shù)求導(dǎo)法則

????????????①函數(shù)的和差積商求導(dǎo)法則

????????????和、差:

%5Cbegin%7Balign%7D%0A%5Bu(x)%5Cpm%20v(x)%5D'%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7B%5Bu(x%2B%5CDelta%20x)%5Cpm%20v(x%2B%5CDelta%20x)%5D-%5Bu(x)%5Cpm%20v(x)%5D%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7Bu(x%2B%5CDelta%20x)-u(x)%7D%7B%5CDelta%20x%7D%5Cpm%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7Bv(x%2B%5CDelta%20x)-v(x)%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3Du'(x)%5Cpm%20v'(x)%0A%5Cend%7Balign%7D

????????????積:

%5Cbegin%7Balign%7D%0A%5Bu(x)v(x)%5D'%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7Bu(x%2B%5CDelta%20x)v(x%2B%5CDelta%20x)-u(x)v(x)%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cleft%5B%5Cfrac%7Bu(x%2B%5CDelta%20x)-u(x)%7D%7B%5CDelta%20x%7D%5Ccdot%20v(x%2B%5CDelta%20x)%2Bu(x)%5Ccdot%5Cfrac%7Bv(x%2B%5CDelta%20x)-v(x)%7D%7B%5CDelta%20x%7D%5Cright%5D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7Bu(x%2B%5CDelta%20x)-u(x)%7D%7B%5CDelta%20x%7D%5Ccdot%20%5Clim_%7B%5CDelta%20x%5Cto0%7Dv(x%2B%5CDelta%20x)%2Bu(x)%5Ccdot%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7Bv(x%2B%5CDelta%20x)-v(x)%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3Du'(x)v(x)%2Bu(x)v'(x)%0A%5Cend%7Balign%7D

????????????商:

%5Cbegin%7Balign%7D%0A%5Cleft%5B%5Cfrac%7Bu(x)%7D%7Bv(x)%7D%5Cright%5D'%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7B%5Cfrac%7Bu(x%2B%5CDelta%20x)%7D%7Bv(x%2B%5CDelta%20x)%7D-%5Cfrac%7Bu(x)%7D%7Bv(x)%7D%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7Bu(x%2B%5CDelta%20x)v(x)-u(x)v(x%2B%5CDelta%20x)%7D%7Bv(x%2B%5CDelta%20x)v(x)%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7B%5Bu(x%2B%5CDelta%20x)-u(x)%5Dv(x)-u(x)%5Bv(x%2B%5CDelta%20x)-v(x)%5D%7D%7Bv(x%2B%5CDelta%20x)v(x)%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7B%5Cfrac%7Bu(x%2B%5CDelta%20x)-u(x)%7D%7B%5CDelta%20x%7Dv(x)-u(x)%5Cfrac%7Bv(x%2B%5CDelta%20x)-v(x)%7D%7B%5CDelta%20x%7D%7D%7Bv(x%2B%5CDelta%20x)v(x)%7D%0A%5C%5C%26%3D%5Cfrac%7Bu'(x)v(x)-u(x)v'(x)%7D%7Bv%5E2(x)%7D%0A%5Cend%7Balign%7D

????????? ? ②反函數(shù)的求導(dǎo)法則

%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5Cfrac%7B1%7D%7B%5Cfrac%7Bdx%7D%7Bdy%7D%7D

????????????也就是說(shuō),反函數(shù)的導(dǎo)數(shù)等于原函數(shù)的導(dǎo)數(shù)的倒數(shù)。

????????????③復(fù)合函數(shù)的求導(dǎo)法則

%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5Cfrac%7Bdy%7D%7Bdu%7D%5Ccdot%5Cfrac%7Bdu%7D%7Bdx%7D

????????????這只是簡(jiǎn)單證明,存在不嚴(yán)格之處。(分子分母同乘的數(shù)可能為0)

????????????④隱函數(shù)的求導(dǎo)法則(微分

????????????簡(jiǎn)單來(lái)說(shuō),就是等式兩邊同時(shí)對(duì)x求導(dǎo)。

模塊一:常函數(shù)

f(x)%3DC

%5Cbegin%7Balign%7D%0Af'(x)%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7Bf(x%2B%5CDelta%20x)-f(x)%7D%7B%5CDelta%20x%7D%20%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7BC-C%7D%7B%5CDelta%20x%7D%20%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%200%0A%5C%5C%26%3D0%0A%5Cend%7Balign%7D

模塊二:冪函數(shù)

f(x)%3Dx%5E%5Calpha

%5Cbegin%7Balign%7D%0Af'(x)%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7Bf(x%2B%5CDelta%20x)-f(x)%7D%7B%5CDelta%20x%7D%20%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7B(x%2B%5CDelta%20x)%5E%5Calpha-x%5E%5Calpha%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7Bx%5E%5Calpha%2B%5Calpha%20x%5E%7B%5Calpha-1%7D%5CDelta%20x%2B%5Cfrac%7B%5Calpha(%5Calpha-1)%7D%7B2%7Dx%5E%7B%5Calpha-2%7D(%5CDelta%20x)%5E2%2B%E2%80%A6%2B(%5CDelta%20x)%5E%5Calpha-x%5E%5Calpha%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7B%5Calpha%20x%5E%7B%5Calpha-1%7D%5CDelta%20x%2B%5Cfrac%7B%5Calpha(%5Calpha-1)%7D%7B2%7Dx%5E%7B%5Calpha-2%7D(%5CDelta%20x)%5E2%2B%E2%80%A6%2B(%5CDelta%20x)%5E%5Calpha%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cleft%5B%5Calpha%20x%5E%7B%5Calpha-1%7D%2B%5Cfrac%7B%5Calpha(%5Calpha-1)%7D%7B2%7Dx%5E%7B%5Calpha-2%7D%5CDelta%20x%2B%E2%80%A6%2B(%5CDelta%20x)%5E%7B%5Calpha-1%7D%5Cright%5D%0A%5C%5C%26%3D%5Calpha%20x%5E%7B%5Calpha-1%7D%0A%5Cend%7Balign%7D

????????以上證明限于%5Calpha為正整數(shù)的情形。

????????下面證明%5Calpha為實(shí)數(shù)的情形。

%5Cbegin%7Balign%7D%0Af'(x)%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7Bf(x%2B%5CDelta%20x)-f(x)%7D%7B%5CDelta%20x%7D%20%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7B(x%2B%5CDelta%20x)%5E%5Calpha-x%5E%5Calpha%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7Dx%5E%5Calpha%5Cfrac%7B%5Cleft(1%2B%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%5Cright)%5E%5Calpha-1%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3Dx%5E%5Calpha%5Cfrac%7B%5Calpha%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%7D%7B%5CDelta%20x%7D%5C%23%0A%5C%5C%26%3D%5Calpha%20x%5E%7B%5Calpha-1%7D%0A%5Cend%7Balign%7D

????## 這里用到了等價(jià)無(wú)窮小

模塊三:對(duì)數(shù)函數(shù)

f(x)%3D%5Clog_a%20x%20

%5Cbegin%7Balign%7D%0Af'(x)%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7Bf(x%2B%5CDelta%20x)-f(x)%7D%7B%5CDelta%20x%7D%20%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7B%5Clog_a(x%2B%5CDelta%20x)-%5Clog_ax%7D%7B%5CDelta%20x%7D%20%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%5Cfrac%7B%5Clog_a%5Cleft(1%2B%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%5Cright)%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%5Clog_a%5Cleft(1%2B%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%5Cright)%5E%7B%5Cfrac%7B1%7D%7B%5CDelta%20x%7D%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%5Clog_a%5Cleft(%5Cleft(1%2B%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%5Cright)%5E%7B%5Cfrac%7Bx%7D%7B%5CDelta%20x%7D%7D%5Cright)%5E%7B%5Cfrac%7B1%7D%7Bx%7D%7D%0A%5C%5C%26%3D%5Clog_a%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%5Cleft(%5Cleft(1%2B%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%5Cright)%5E%7B%5Cfrac%7Bx%7D%7B%5CDelta%20x%7D%7D%5Cright)%5E%7B%5Cfrac%7B1%7D%7Bx%7D%7D%0A%5C%5C%26%3D%5Cfrac%7B1%7D%7Bx%7D%5Clog_a%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%5Cleft(1%2B%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%5Cright)%5E%7B%5Cfrac%7Bx%7D%7B%5CDelta%20x%7D%7D%0A%5C%5C%26%3D%5Cfrac%7B1%7D%7Bx%7D%5Clog_ae%5C%23%0A%5C%5C%26%3D%5Cfrac%7B1%7D%7Bx%5Cln%20a%7D%0A%5Cend%7Balign%7D

? ? ## 這里用到了重要極限

????????特別的,當(dāng)a%3De時(shí),有

(%5Cln%20x)'%3D%5Cfrac%7B1%7D%7Bx%7D

模塊四:指數(shù)函數(shù)

f(x)%3Da%5Ex

y%3Da%5Ex

x%3D%5Clog_ay

1%3D%5Cfrac%7B1%7D%7By%5Cln%20a%7D%5Ccdot%5Cfrac%7Bdy%7D%7Bdx%7D

f'(x)%3Dy%5Cln%20a%3Da%5Ex%5Cln%20a

????????特別的,當(dāng)a%3De時(shí),有

(e%5Ex)'%3De%5Ex

????## 嗚呼,又被系統(tǒng)制裁了,一個(gè)文檔最多100張圖片(公式也算),超額了。。??春笪陌伞?。。

完整推導(dǎo)導(dǎo)數(shù)公式體系(1)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
雅安市| 中宁县| 定陶县| 延寿县| 两当县| 五华县| 台南县| 丹寨县| 丰城市| 西昌市| 勃利县| 红安县| 房山区| 怀远县| 扎囊县| 赤水市| 郁南县| 会理县| 龙陵县| 泸西县| 习水县| 上虞市| 贺州市| 汨罗市| 日照市| 陈巴尔虎旗| 灵丘县| 廉江市| 哈巴河县| 三门峡市| 翁源县| 东平县| 洛隆县| 凌云县| 永嘉县| 常山县| 余姚市| 红河县| 九龙城区| 资兴市| 克山县|