【菲赫金哥爾茨微積分學(xué)教程精讀筆記Ep104】函數(shù)不定式(四)
2020-09-22 13:43 作者:躺坑老碧的學(xué)習(xí)瞎記 | 我要投稿
今天結(jié)束這部分例題:
e.x趨近于0時(shí),lim (1-cos x)/x^2=1/2

(1-cos x)/x^2=2(sin x/2)^2/4(x/2)^2=[(sin?x/2)/(x/2)]^2/2;
x趨近于0時(shí),lim?sin x/x=1,則lim(1-cos x)/x^2=1/2
f.x趨近于0時(shí),lim?(tan x-sin?x)/x^2=1/2


=(sin x/cos x-sin?x)/x^3
=sinx(1-cos?x)/(x^3cos?x)
={(sinx/x)[(1-cos?x)/x^2]}/cos x;
x趨近于0時(shí),lim?sin?x/x=1,lim(1-cos x)/x^2=1/2,lim 1/cos x=1,
則lim(tan x-sin?x)/x^3=1/2.
g.x趨近于π/2時(shí),lim(sec x-tan x)=0

x趨近于π/2時(shí),π/2-x趨近于0,于是
sec x-tan x
=1/cos x-sin x/cos x
=(1-sin x)/cos x
=[1-cos(π/2-x)]/sin(π/2-x)
={[1-cos(π/2-x)]/(π/2-x)^2}[(π/2-x)/sin(π/2-x)](π/2-x);
x趨近于π/2時(shí),lim[1-cos(π/2-x)]/(π/2-x)^2=1/2,lim(π/2-x)/sin(π/2-x)=1,
lim(π/2-x)=0,則lim(sec x-tan x)=0.
到這里!
標(biāo)簽: