數(shù)學(xué)趣題(1)

求解:arctan[f(x)]+arctan[g(x)]
解:設(shè)arctan[f(x)]=A(x),arctan[g(x)]=B(x).
則arctan[f(x)]+arctan[g(x)]=A(x)+B(x).且f(x)=tan[A(x)],g(x)=tan[B(x)].
所以tan[A(x)+B(x)]=(tan[A(x)]+tan[B(x)])/(1-tan[A(x)]tan[B(x)])=(f(x)+g(x))/(1-f(x)g(x))
所以A(x)+B(x)=arctan[(f(x)+g(x))/(1-f(x)g(x))]
所以原式=arctan[(f(x)+g(x))/(1-f(x)g(x))]
標(biāo)簽: