最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Calculus] Euler's Factorial Integral

2021-08-28 08:21 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

In 1729, Leonhard Euler (1707 - 1783) discovered the integral:

%5Cint_0%5E1%20%7B%5Cleft(-%5Cln%20s%5Cright)%7D%5E%7Bn%7D%20ds%20

Show that the integral?%5Cint_0%5E1%20%7B%5Cleft(-%5Cln%20s%5Cright)%7D%5E%7Bn%7D%20ds is equivalent to the Gamma function %5CGamma%20(n%2B1)%20%3D%20%5Cint_0%5E%5Cinfty%20%7Bt%7D%5E%7Bn%7D%20%7Be%7D%5E%7B-t%7D%20dt; hence, it is equivalent to n! for non-negative integers n.


【Solution】

Let t%20%3D%20-%5Cln%20s, then s%20%3D%20%7Be%7D%5E%7B-t%7D.? Consequently dt%20%3D%20-%5Cfrac%7B1%7D%7Bs%7Dds%20%3D%20-%7Be%7D%5E%7Bt%7Dds, which means ds%20%3D%20-%7Be%7D%5E%7B-t%7Ddt.?

When s%3D0, we have? t%20%3D%20%5Cinfty. When s%3D1, we have? t%20%3D%200. Thus, the original integral transforms to -%5Cint_%5Cinfty%5E0%20%7Bt%7D%5E%7Bn%7D%20%7Be%7D%5E%7B-t%7D%20dt%20 or %20%5Cint_0%5E%5Cinfty%20%7Bt%7D%5E%7Bn%7D%20%7Be%7D%5E%7B-t%7D%20dt%20.

This integral is called he Gamma function, and it is defined as

%5CGamma%20(n%2B1)%20%3D%20%5Cint_0%5E%5Cinfty%20%7Bt%7D%5E%7Bn%7D%20%7Be%7D%5E%7B-t%7D%20dt%20%3D%20n!

for non-negative integers n.

[Calculus] Euler's Factorial Integral的評論 (共 條)

分享到微博請遵守國家法律
衡水市| 库车县| 双流县| 河北区| 河西区| 崇左市| 班戈县| 南澳县| 晋中市| 信阳市| 宜阳县| 高邮市| 日喀则市| 观塘区| 缙云县| 五莲县| 临沭县| 乐昌市| 道孚县| 辽宁省| 万载县| 通山县| 东源县| 绵竹市| 静宁县| 崇阳县| 中方县| 扶风县| 嘉荫县| 庆阳市| 曲周县| 马尔康县| 杭锦后旗| 厦门市| 腾冲县| 永寿县| 蓬溪县| 沐川县| 肥乡县| 通江县| 江陵县|