最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

量子場(chǎng)論(二):量子場(chǎng)論中的正則對(duì)易關(guān)系

2022-10-26 18:43 作者:我的世界-華汁  | 我要投稿


在量子力學(xué)中,薛定諤繪景和海森堡繪景提供了兩種等價(jià)的描述方法。

在薛定諤繪景中,態(tài)矢%7C%5CPsi(t)%5Crangle%5E%5Cmathrm%20S代表隨時(shí)間演化的物理態(tài),而希爾伯特空間中的算符%5Chat%20O%5E%5Cmathrm%20S不依賴于時(shí)間。如果系統(tǒng)的哈密頓算符%5Chat%20H不含時(shí)間,則態(tài)矢%7C%5CPsi(t)%5Crangle%5E%5Cmathrm%20St%3D0時(shí)刻的態(tài)矢%7C%5CPsi(0)%5Crangle%5E%5Cmathrm%20S通過幺正變換e%5E%7B-i%5Chat%20Ht%7D聯(lián)系起來:

%5Cdisplaystyle%7C%5CPsi(t)%5Crangle%5E%5Cmathrm%20S%3De%5E%7B-i%5Chat%20Ht%7D%7C%5CPsi(0)%5Crangle%5E%5Cmathrm%20S.%5Ctag%7B2.1%7D

于是便有:

i%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20t%7D%7C%5CPsi(t)%5Crangle%5E%5Cmathrm%7BS%7D%3Di%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20t%7De%5E%7B-i%5Chat%20Ht%7D%7C%5CPsi(0)%5Crangle%5E%5Cmathrm%7BS%7D%3D%5Chat%20He%5E%7B-i%5Chat%20Ht%7D%7C%5CPsi(0)%5Crangle%5E%5Cmathrm%7BS%7D%3D%5Chat%20H%7C%5CPsi(t)%5Crangle%5E%5Cmathrm%7BS%7D.%5Ctag%7B2.2%7D

這就是量子力學(xué)中的薛定諤方程,(2.1)式是它的解。

在海森堡繪景中,態(tài)矢定義為:

%7C%5CPsi%5Crangle%5E%5Cmathrm%7BH%7D%3De%5E%7Bi%5Chat%20Ht%7D%7C%5CPsi(t)%5Crangle%5E%5Cmathrm%7BS%7D%3D%7C%5CPsi(0)%5Crangle%5E%5Cmathrm%7BS%7D.%5Ctag%7B2.3%7D

它不隨時(shí)間演化:

i%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20t%7D%7C%5CPsi%5Crangle%5E%5Cmathrm%7BH%7D%3D0.%5Ctag%7B2.4%7D

而算符%5Chat%20O%5E%5Cmathrm%7BH%7D(t)依賴于時(shí)間,通過一個(gè)含時(shí)的相似變換與%5Chat%20O%5E%5Cmathrm%7BS%7D聯(lián)系起來:

%5Chat%20O%5E%5Cmathrm%7BH%7D(t)%3De%5E%7Bi%5Chat%20Ht%7D%5Chat%20O%5E%5Cmathrm%7BS%7De%5E%7B-i%5Chat%20Ht%7D.%5Ctag%7B2.5%7D

由于%5B%5Chat%20H%2C%5Chat%20H%5D%3D0%2C所以:

e%5E%7Bi%5Chat%20Ht%7D%5Chat%20He%5E%7B-i%5Chat%20Ht%7D%3D%5Chat%20He%5E%7Bi%5Chat%20Ht%7De%5E%7B-i%5Chat%20Ht%7D%3D%5Chat%20H.%5Ctag%7B2.6%7D

故哈密頓算符%5Chat%20H在兩種繪景中相同:

%5Chat%20H%5E%5Cmathrm%7BH%7D%3D%5Chat%20H%5E%5Cmathrm%7BS%7D%3D%5Chat%20H.%5Ctag%7B2.7%7D

由:

%5E%5Cmathrm%7BH%7D%5Clangle%5CPsi%7C%5Chat%20O%5E%5Cmathrm%7BH%7D(t)%7C%5CPsi%5Crangle%5E%5Cmathrm%7BH%7D%3D%5C%20%5E%5Cmathrm%7BH%7D%5Clangle%5CPsi%7Ce%5E%7Bi%5Chat%20Ht%7D%5Chat%20O%5E%5Cmathrm%7BS%7De%5E%7B-i%5Chat%20Ht%7D%7C%5CPsi%5Crangle%5E%5Cmathrm%7BH%7D%3D%5C%20%5E%5Cmathrm%7BS%7D%5Clangle%5CPsi(t)%7C%5Chat%20O%5E%5Cmathrm%7BS%7D%7C%5CPsi(t)%5Crangle%5E%5Cmathrm%7BS%7D%5Ctag%7B2.8%7D

可知,兩個(gè)繪景中力學(xué)量在態(tài)上的平均值相同。而且:

i%5Cpartial_0%5Chat%20O%5E%5Cmathrm%7BH%7D(t)%3D(i%5Cpartial_0e%5E%7Bi%5Chat%20Ht%7D)%5Chat%20O%5E%5Cmathrm%7BS%7De%5E%7B-i%5Chat%20Ht%7D%2Be%5E%7Bi%5Chat%20Ht%7D%5Chat%20O%5E%5Cmathrm%7BS%7D(i%5Cpartial_0e%5E%7B-i%5Chat%20Ht%7D)%5C%5C%3D-%5Chat%20He%5E%7Bi%5Chat%20Ht%7D%5Chat%20O%5E%5Cmathrm%7BS%7De%5E%7B-i%5Chat%20Ht%7D%2Be%5E%7Bi%5Chat%20Ht%7D%5Chat%20O%5E%5Cmathrm%7BS%7De%5E%7B-i%5Chat%20Ht%7D%5Chat%20H%3D-%5Chat%20H%5Chat%20O%5E%5Cmathrm%7BH%7D(t)%2B%5Chat%20O%5E%5Cmathrm%7BH%7D(t)%5Chat%20H.%5Ctag%7B2.9%7D

即海森堡繪景中的含時(shí)算符%5Chat%20O%5E%5Cmathrm%7BH%7D(t)滿足海森堡運(yùn)動(dòng)方程:

i%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20t%7D%5Chat%20O%5E%5Cmathrm%7BH%7D(t)%3D%5B%5Chat%20O%5E%5Cmathrm%7BH%7D(t)%2C%5Chat%20H%5D.%5Ctag%7B2.10%7D

上一節(jié)對(duì)簡(jiǎn)諧振子的量子化是在薛定諤繪景中進(jìn)行的,因?yàn)闆]有考慮算符x%5Chat%20p隨時(shí)間的演化。將薛定諤繪景下的正則對(duì)易關(guān)系記作%5Bx%5E%5Cmathrm%7BS%7D%2C%5Chat%20p%5E%5Cmathrm%7BS%7D%5D%3Di%2C它在海森堡繪景中的形式為:

%5Bx%5E%5Cmathrm%7BH%7D(t)%2C%5Chat%20p%5E%5Cmathrm%7BH%7D(t)%5D%3D%5Be%5E%7Bi%5Chat%20Ht%7Dx%5E%5Cmathrm%7BS%7De%5E%7B-i%5Chat%20Ht%7D%2Ce%5E%7Bi%5Chat%20Ht%7D%5Chat%20p%5E%5Cmathrm%7BS%7De%5E%7B-i%5Chat%20Ht%7D%5D%3De%5E%7Bi%5Chat%20Ht%7D%5Bx%5E%5Cmathrm%7BS%7D%2C%5Chat%20p%5E%5Cmathrm%7BS%7D%5De%5E%7B-i%5Chat%20Ht%7D%3De%5E%7Bi%5Chat%20Ht%7Die%5E%7B-i%5Chat%20Ht%7D%3Di.%5Ctag%7B2.11%7D

可見,正則對(duì)易關(guān)系的形式不依賴于繪景。(2.11)式是在同一時(shí)刻t成立的,因此(2.11)又稱為等時(shí)對(duì)易關(guān)系。接下來的討論在海森堡繪景中進(jìn)行,省略海森堡繪景的上標(biāo)%5Cmathrm%20H.

將上述討論推廣到具有n個(gè)自由度的系統(tǒng),設(shè)海森堡繪景中的廣義坐標(biāo)算符為%5Chat%20q_i(t)%2C廣義動(dòng)量算符為%5Chat%20p_i(t)%2C它們是系統(tǒng)的正則變量。由于不同自由度不該互相影響,則這些算符的等時(shí)對(duì)易關(guān)系為:

%5B%5Chat%20q_i(t)%2C%5Chat%20p_j(t)%5D%3Di%5Cdelta_%7Bij%7D%5C%20%2C%5C%20%5B%5Chat%20q_i(t)%2C%5Chat%20q_j(t)%5D%3D0%5C%20%2C%5C%20%5B%5Chat%20p_i(t)%2C%5Chat%20p_j(t)%5D%3D0%5C%20.%5Ctag%7B2.12%7D

在量子場(chǎng)論中,為了平等處理時(shí)間與空間,時(shí)間與空間坐標(biāo)都應(yīng)作為量子場(chǎng)算符%5CPhi(%5Cmathbf%20x%2Ct)的參數(shù)。場(chǎng)論討論的是無窮多個(gè)自由度的系統(tǒng),每一個(gè)空間點(diǎn)上的%5CPhi(%5Cmathbf%20x%2Ct)都是一個(gè)廣義坐標(biāo)。為了從有限個(gè)自由度過渡到無窮多個(gè)自由度,我們現(xiàn)將空間離散化,劃分成n個(gè)小體積元V_i%2C再取V_i%5Crightarrow0的極限讓空間連續(xù)。在體積元V_i中定義相應(yīng)的廣義坐標(biāo):

%5CPhi_i(t)%5Cequiv%5Cfrac1%7BV_i%7D%5Cint_%7BV_i%7D%5CPhi(%5Cmathbf%20x%2Ct)%5Cmathrm%20d%5E3x.%5Ctag%7B2.13%7D

這是場(chǎng)%5CPhi(%5Cmathbf%20x%2Ct)在體積元V_i中的平均值。將%5Cpartial_%5Cmu%5CPhi和拉格朗日量密度%5Cmathcal%20L(%5CPhi%2C%5Cpartial_%5Cmu%5CPhi)V_i中的平均值記為:

%5Cpartial_%5Cmu%5CPhi_i%5Cequiv%5Cfrac1%7BV_i%7D%5Cint_%7BV_i%7D%5Cpartial_%5Cmu%5CPhi%5Cmathrm%20d%5E3x%5C%20%2C%5C%20%5Cmathcal%20L_i%5Cequiv%5Cfrac1%7BV_i%7D%5Cint_%7BV_i%7D%5Cmathcal%20L(%5CPhi%2C%5Cpartial_%5Cmu%5CPhi)%5Cmathrm%20d%5E3x.%5Ctag%7B2.14%7D

當(dāng)V_i取的足夠小時(shí),%5Cmathcal%20L_i成為%5CPhi_i%5Cpartial_%5Cmu%5CPhi_i的函數(shù)%5Cmathcal%20L_i(%5CPhi_i%2C%5Cpartial_%5Cmu%5CPhi_i).拉格朗日量表述為:

L(t)%3D%5Cint%5Cmathcal%20L%5Cmathrm%20d%5E3x%3D%5Csum_i%5Cint_%7BV_i%7D%5Cmathcal%20L%5Cmathrm%20d%5E3x%3D%5Csum_iV_i%5Cmathcal%20L_i(%5CPhi_i%2C%5Cpartial_%5Cmu%5CPhi_i).%5Ctag%7B2.15%7D

于是,與之共軛的廣義動(dòng)量定義為:

%5CPi_i(t)%3D%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial(%5Cpartial_0%5CPhi_i)%7D%3D%5Csum_jV_j%5Cfrac%7B%5Cpartial%5Cmathcal%20L_j%7D%7B%5Cpartial(%5Cpartial_0%5CPhi_i)%7D%3D%5Csum_jV_j%5Cdelta_%7Bij%7D%5Cfrac%7B%5Cpartial%5Cmathcal%20L_i%7D%7B%5Cpartial(%5Cpartial_0%5CPhi_i)%7D%3DV_i%5Cfrac%7B%5Cpartial%5Cmathcal%20L_i%7D%7B%5Cpartial(%5Cpartial_0%5CPhi_i)%7D.%5Ctag%7B2.16%7D

由(2.12)式得到等時(shí)對(duì)易關(guān)系:

%5B%5CPhi_i(t)%2C%5CPi_j(t)%5D%3Di%5Cdelta_%7Bij%7D%5C%20%2C%5C%20%5B%5CPhi_i(t)%2C%5CPhi_j(t)%5D%3D0%5C%20%2C%5C%20%5B%5CPi_i(t)%2C%5CPi_j(t)%5D%3D0.%5Ctag%7B2.17%7D

引入廣義動(dòng)量密度:

%5Cpi_i(t)%5Cequiv%5Cfrac%7B%5Cpartial%5Cmathcal%20L_i%7D%7B%5Cpartial(%5Cpartial_0%5CPhi_i)%7D%3D%5Cfrac%7B%5CPi_i(t)%7D%7BV_i%7D.%5Ctag%7B2.18%7D

等時(shí)對(duì)易關(guān)系變?yōu)椋?/p>

%5B%5CPhi_i(t)%2C%5Cpi_j(t)%5D%3Di%5Cfrac%7B%5Cdelta_%7Bij%7D%7D%7BV_j%7D%5C%20%2C%5C%20%5B%5CPhi_i(t)%2C%5CPhi_j(t)%5D%3D0%5C%20%2C%5C%20%5B%5Cpi_i(t)%2C%5Cpi_j(t)%5D%3D0.%5Ctag%7B2.19%7D

從離散到連續(xù),克羅內(nèi)克爾符號(hào)%5Cdelta_%7Bij%7D化為狄拉克%5Cdelta函數(shù)。狄拉克%5Cdelta函數(shù)定義為:

%5Cdelta(x)%3D%5Cbegin%7Bcases%7D%2B%5Cinfty%5C%20%2C%5C%20%5C%20x%3D0%5C%20%2C%5C%5C0%5C%20%2C%5C%20%5C%20x%5Cneq0%5C%20.%5Cend%7Bcases%7D%5Ctag%7B2.20%7D

那么這個(gè)無窮很麻煩,無窮大的幾倍還是無窮大,不好定義,所以規(guī)定:

%5Cint%5E%7B%2B%5Cinfty%7D_%7B-%5Cinfty%7D%5Cdelta(x)%5Cmathrm%20dx%3D1.%5Ctag%7B2.21%7D

從而,對(duì)于任意函數(shù)f(x)%2C有:

f(x)%3D%5Cint%5E%7B%2B%5Cinfty%7D_%7B-%5Cinfty%7Df(y)%5Cdelta(x-y)%5Cmathrm%20dy.%5Ctag%7B2.22%7D

狄拉克函數(shù)是偶函數(shù),即:

%5Cdelta(x)%3D%5Cdelta(-x).%5Ctag%7B2.23%7D

而且滿足:

f(x)%5Cdelta(x-y)%3Df(y)%5Cdelta(x-y).%5Ctag%7B2.24%7D

x%5Cdelta(x)%3D0.%5Ctag%7B2.25%7D

%5Cint%5E%7B%2B%5Cinfty%7D_%7B-%5Cinfty%7De%5E%7B%5Cpm%20ipx%7D%5Cmathrm%20dx%3D2%5Cpi%5Cdelta(p).%5Ctag%7B2.26%7D

約定函數(shù)f(x)的傅里葉變換為:

%5Ctilde%20f(p)%3D%5Cint%5E%7B%2B%5Cinfty%7D_%7B-%5Cinfty%7Df(x)e%5E%7B-ipx%7D%5Cmathrm%20dx.%5Ctag%7B2.27%7D

而傅里葉逆變換為:

f(x)%3D%5Cint%5E%7B%2B%5Cinfty%7D_%7B-%5Cinfty%7D%5Cfrac1%7B2%5Cpi%7De%5E%7Bipx%7D%5Ctilde%20f(p)%5Cmathrm%20dp.%5Ctag%7B2.28%7D

可見,2%5Cpi%5Cdelta(p)f(x)%3D1的傅里葉變換。對(duì)于連續(xù)實(shí)函數(shù)f(x)%2C若方程f(x)%3D0具有若干分立實(shí)根x_i%2C則有:

%5Cdelta%5Bf(x)%5D%3D%5Csum_i%5Cfrac%7B%5Cdelta(x-x_i)%7D%7B%7Cf%5E%5Cprime(x)%7C%7D.%5Ctag%7B2.29%7D

用三個(gè)一維狄拉克函數(shù)之積定義三維狄拉克函數(shù):

%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20x)%3D%5Cdelta(x%5E1)%5Cdelta(x%5E2)%5Cdelta(x%5E3).%5Ctag%7B2.30%7D

三維狄拉克函數(shù)滿足:

%5Cint%5Cdelta%5E%7B(3)%7D(x)%5Cmathrm%20d%5E3x%3D1.%5Ctag%7B2.31%7D

對(duì)于任意連續(xù)函數(shù)f(%5Cmathbf%20x)%2C有:

f(%5Cmathbf%20x)%3D%5Cint%20f(%5Cmathbf%20y)%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20x-%5Cmathbf%20y)%5Cmathrm%20d%5E3y.%5Ctag%7B2.32%7D

由(2.26)式推出:

%5Cint%20e%5E%7B%5Cpm%20i%5Cmathbf%20p%5Ccdot%5Cmathbf%20x%7D%5Cmathrm%20d%5E3x%3D%5Cint%20e%5E%7B%5Cpm%20ip%5E1x%5E1%7D%5Cmathrm%20dx%5E1%5Cint%20e%5E%7B%5Cpm%20ip%5E2x%5E2%7D%5Cmathrm%20dx%5E2%5Cint%20e%5E%7B%5Cpm%20ip%5E3x%5E3%7D%5Cmathrm%20dx%5E3%3D2%5Cpi%5Cdelta(x%5E1)%5Ccdot2%5Cpi%5Cdelta(x%5E2)%5Ccdot2%5Cpi%5Cdelta(x%5E3).%5Ctag%7B2.33%7D

可見,三維狄拉克函數(shù)滿足如下關(guān)系:

f(%5Cmathbf%20x)%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20x-%5Cmathbf%20y)%3Df(%5Cmathbf%20y)%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20x-%5Cmathbf%20y)%5Ctag%7B2.34%7D

%5Cmathbf%20x%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20x)%3D0.%5Ctag%7B2.35%7D

%5Cint%20e%5E%7B%5Cpm%20i%5Cmathbf%20p%5Ccdot%5Cmathbf%20x%7D%5Cmathrm%20d%5E3x%3D(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p).%5Ctag%7B2.36%7D

在三維空間中,函數(shù)f(%5Cmathbf%20x)的傅里葉變換是:

%5Ctilde%20f(%5Cmathbf%20p)%3D%5Cint%20f(%5Cmathbf%20x)e%5E%7B-i%5Cmathbf%20p%5Ccdot%5Cmathbf%20x%7D%5Cmathrm%20d%5E3x.%5Ctag%7B2.37%7D

逆變換是:

f(%5Cmathbf%20x)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D%5Ctilde%20f(%5Cmathbf%20p)e%5E%7Bi%5Cmathbf%20p%5Ccdot%5Cmathbf%20x%7D%5Cmathrm%20d%5E3p.%5Ctag%7B2.38%7D

因此,(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p)f(%5Cmathbf%20x)%3D1的傅里葉變換。

設(shè)f_if(%5Cmathbf%20x)V_i上的平均值,有:

f_i%3D%5Csum_jf_j%5Cdelta_%7Bij%7D%3D%5Csum_jV_jf_j%5Cfrac%7B%5Cdelta_%7Bij%7D%7D%7BV_j%7D.%5Ctag%7B2.39%7D

(2.32)式是(2.39)式在V_i%5Crightarrow0時(shí)的極限。即在這個(gè)極限下,有:

%5Cfrac%7B%5Cdelta_%7Bij%7D%7D%7BV_j%7D%5Crightarrow%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20x-%5Cmathbf%20y).%5Ctag%7B2.40%7D

而且在這個(gè)極限下:

%5CPhi_i(t)%5Crightarrow%5CPhi(%5Cmathbf%20x%2Ct)%5C%20%2C%5C%20%5Cpartial_%5Cmu%5CPhi_i%5Crightarrow%5Cpartial_%5Cmu%5CPhi(%5Cmathbf%20x%2Ct)%5C%20%2C%5C%20%5Cmathcal%20L_i%5Crightarrow%5Cmathcal%20L(%5Cmathbf%20x%2Ct).%5Ctag%7B2.41%7D

從而,共軛動(dòng)量密度為:

%5Cpi_i(t)%3D%5Cfrac%7B%5Cpartial%5Cmathcal%20L_i%7D%7B%5Cpartial(%5Cpartial_0%5CPhi_i)%7D%5Crightarrow%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_0%5CPhi)%7D%3D%5Cpi(%5Cmathbf%20x%2Ct).%5Ctag%7B2.42%7D

等時(shí)對(duì)易關(guān)系化為:

%5B%5CPhi(%5Cmathbf%20x%2Ct)%2C%5Cpi(%5Cmathbf%20y%2Ct)%5D%3Di%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20x-%5Cmathbf%20y)%5C%20%2C%5C%20%5B%5CPhi(%5Cmathbf%20x%2Ct)%2C%5CPhi(%5Cmathbf%20y%2Ct)%5D%3D0%5C%20%20%2C%5C%20%5B%5Cpi(%5Cmathbf%20x%2Ct)%2C%5Cpi(%5Cmathbf%20y%2Ct)%5D%3D0.%5Ctag%7B2.43%7D

對(duì)于包含若干個(gè)場(chǎng)%5CPhi_a的系統(tǒng),假設(shè)不同的場(chǎng)不會(huì)互相影響,則:

%5B%5CPhi_a(%5Cmathbf%20x%2Ct)%2C%5Cpi_b(%5Cmathbf%20y%2Ct)%5D%3Di%5Cdelta_%7Bab%7D%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20x-%5Cmathbf%20y)%5C%20%2C%5C%20%5B%5CPhi_a(%5Cmathbf%20x%2Ct)%2C%5CPhi_b(%5Cmathbf%20y%2Ct)%5D%3D0%5C%20%20%2C%5C%20%5B%5Cpi_a(%5Cmathbf%20x%2Ct)%2C%5Cpi_b(%5Cmathbf%20y%2Ct)%5D%3D0.%5Ctag%7B2.44%7D

這就是量子場(chǎng)論中的正則對(duì)易關(guān)系。這里的正則變量都是算符。

量子場(chǎng)論(二):量子場(chǎng)論中的正則對(duì)易關(guān)系的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
宜春市| 兴安盟| 大兴区| 望谟县| 万州区| 宁津县| 翁源县| 宜宾县| 兴山县| 大渡口区| 明溪县| 闻喜县| 乳源| 昭觉县| 武宁县| 山东| 襄汾县| 青河县| 富源县| 二连浩特市| 民县| 泗水县| 淮南市| 页游| 枝江市| 庐江县| 榆中县| 霍邱县| 阳信县| 济源市| 睢宁县| 田东县| 南召县| 太仆寺旗| 新龙县| 互助| 凤阳县| 宁陕县| 西乌珠穆沁旗| 西安市| 屏东市|