最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

工程數(shù)學(xué)附錄_傅里葉級數(shù)與傅里葉變換

2023-02-25 20:27 作者:sky92曇  | 我要投稿

這里要首先證明三角函數(shù)的正交性然后,既然證明了正交,利用加權(quán)求和的形式得到關(guān)于周期為 2%5Cpi 函數(shù)的傅里葉級數(shù),再把周期擴(kuò)展到任意L
為了簡化公式,使用歐拉公式把復(fù)數(shù)域和三角函數(shù)混合的形式區(qū)別統(tǒng)合起來,于是有了周期函數(shù)的復(fù)指數(shù)表達(dá)
,最終的周期復(fù)指表達(dá)中會算得一個系數(shù)項,整個展開的矛盾就轉(zhuǎn)移到了該系數(shù)中,然后我們將整個函數(shù)推廣到非周期函數(shù)中,即將周期推到無限的函數(shù),無限導(dǎo)致的就是級數(shù)求和成為連續(xù)積分 ,最后得到規(guī)整的式子,就是傅里葉變換和逆變換;

三角函數(shù)的正交性

三角函數(shù)正交性是傅里葉級數(shù)的基礎(chǔ)

我們有個 三角函數(shù)系 集合

%5C%7B%20%5Csin%200x%3D0%20%2C%20%5Ccos%200x%3D1%2C%20%5Csin%20x%20%5Ccos%20x%2C%5Csin%202x%20%5Ccos%202x%2C...%2C%5Csin%20nx%20%5Ccos%20nx%2C...%20%5C%7D


%5C%7B%20%5Csin%20nx%20%2C%5Ccos%20nx%20%5C%7D%2Cn%20%3D%200%2C1%2C2%2C...

那么什么是正交,向量內(nèi)積為0是正交,函數(shù)則這里有個定義 :
%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Csin%20nx%20%5Ccos%20mx%20dx%20%3D0%20%20
%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20mx%20%5Ccos%20nx%20dx%20%3D0%20%20%2C%20n%5Cneq%20m%20

那么上述的三角函數(shù)正交的情況是怎么來的?
簡單來說,其實正交就是垂直 , 也就是兩個向量的內(nèi)積為0的時候就是正交;

%5Cvec%20a%20%5Ccdot%20%5Cvec%20b%20%3D%20%7C%5Cvec%20a%7C%7C%5Cvec%20b%7C%5Ccos%5Cphi%20%3D%20%7C%5Cvec%20a%7C%7C%5Cvec%20b%7C%20%5Ccdot%200%3D0 就平面上來說正交是這樣,那么如果用向量表達(dá)出來,假設(shè)兩者在n維度場:
%5Cvec%20a%20%5Ccdot%20%5Cvec%20b%20%3D%20a_1%20b_1%2Ba_2%20b_2%2B...%2Ba_n%20b_n%3D%5Csum%5Climits%5E%5Cinfty_%7Bi%3D1%7Da_i%20b_i%3D0
如果上述求和公式并非取整數(shù),而是連續(xù)實數(shù),那么上述的求和就成為了積分;
于是當(dāng)我們將向量轉(zhuǎn)為無限維的函數(shù),意味著其向量內(nèi)元素是無限且稠密的,但某個元素總是可用函數(shù)自變量表達(dá)

a%20%5Ccdot%20b%20%3D%5Cint%5E%7Bx_1%7D_%7Bx_0%7Df(x)g(x)dx%20%5C%5Ca%3Df(x)%2Cb%3Dg(x)%20%2Cx%5Cin(x_0%2Cx_1)

由此我們定義出了函數(shù)之間的內(nèi)積以及函數(shù)的正交;

于是我們要在三角函數(shù)上證明,,利用三角積化和差公式,以及奇函數(shù)性質(zhì):
%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20nx%20%5Ccos%20mx%20dx%20%2C%20n%5Cneq%20m%20%5Crightarrow%20%20%5C%5C%20%0A%5Cfrac%7B1%7D%7B2%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20(n-m)x%20%5Ccos%20(n%2Bm)x%20dx%20%5C%5C%3D%0A%5Cfrac%7B1%7D%7B2%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20(n-m)x%20dx%20%5Cfrac%7B1%7D%7B2%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Ccos%20(n%2Bm)x%20dx%20%5C%5C%3D%0A%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7B1%7D%7Bn-m%7D%20%5Csin%20(n-m)x%20%7C%5E%5Cpi_%7B-%5E%5Cpi%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7B1%7D%7Bn-m%7D%5Csin%20(n%2Bm)x%7C%5E%5Cpi_%7B-%5E%5Cpi%7D%20%3D%0A0%2B0%3D0

同樣我們也可驗證:
%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20nx%20%5Csin%20mx%20dx%20%3D%200%2C%20n%5Cneq%20m%20%5C%5C%20%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Csin%20nx%20%5Csin%20mx%20dx%20%3D%200%2C%20n%5Cneq%20m%20

那么如果n = m ,就有?

%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20nx%20%5Ccos%20mx%20dx%20%2C%20n%3Dm%5Cneq0%20%20%5Crightarrow%20%5C%5C%0A%20%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Cfrac%7B1%7D%7B2%7D%5B1%2B%5Ccos2mx%5D%20dx%20%5C%5C%3D%20%0A%5Cfrac%7B1%7D%7B2%7D%20%5B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%201%20dx%2B%20%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Ccos2mx%20dx%20%5D%20%20%5C%5C%3D%0A%5Cfrac%7B1%7D%7B2%7D%20%5B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%201%20dx%2B%20%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Ccos0x%5Ccos2mx%20dx%20%5D%20%20%5C%5C%3D%0A%5Cfrac%7B1%7D%7B2%7D%5B%5Cpi%2B0%5D%3D%5Cpi

那么我們將上述所有三角函數(shù)正交的情況羅列出來:

?%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Csin%20nx%20%5Ccos%20mx%20dx%20%3D0%20%5C%5C%20%0A%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Csin%20nx%20%5Csin%20mx%20dx%20%3D%200%20%2Cn%5Cneq%20m%20%5C%5C%20%0A%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Csin%20nx%20%5Csin%20mx%20dx%20%3D%20%5Cpi%20%2Cn%3Dm%5Cneq0%20%5C%5C%20%0A%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Csin%20nx%20%5Csin%20mx%20dx%20%3D%202%5Cpi%20%2Cn%3Dm%3D0%20%5C%5C%0A%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20nx%20%5Ccos%20mx%20dx%20%3D%200%20%2Cn%5Cneq%20m%20%5C%5C%20%0A%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20nx%20%5Ccos%20mx%20dx%20%3D%20%5Cpi%20%2Cn%3Dm%5Cneq0%20%5C%5C%20%0A%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20nx%20%5Ccos%20mx%20dx%20%3D%202%5Cpi%20%2Cn%3Dm%3D0%0A


?

周期為 2%5Cpi 的函數(shù)展開為傅里葉級數(shù)

拿到一個周期為T%20%3D%202%5Cpi的函數(shù) ? f(x)%3Df(x%2B2%5Cpi)%20?

將其展開為三角函數(shù)的加和,那么兩個三角函數(shù)作為基底進(jìn)行加權(quán)組合,兩種表達(dá)方式:

f(x)%3D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D0%7Da_n%5Ccos%20nx%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D0%7Db_n%5Csin%20nx%20%5C%5C%0Af(x)%3Da_0%5Ccos0x%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20nx%2Bb_0%5Csin0x%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20nx%3Da_0%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20nx%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20nx

我們需要求出這里的a_0

對上述第二式兩邊積分

%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)dx%3D%5Cint%5E%5Cpi_%7B-%5Cpi%7Da_0dx%2B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20nx%20dx%2B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20nx%20dx%20%3D%0Aa_0%5Cint%5E%5Cpi_%7B-%5Cpi%7Ddx%2B0%2B0%3Da_0x%7C%5E%5Cpi_%7B-%5Cpi%7D%3D2%5Cpi%20a_0

于是可以得到? a_0%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)dx%20 ,這個公式有時為了后續(xù)計算方便通常兩側(cè)都乘2 得到

a_0%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)dx%20%2C%20%20a'_0%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)dx

接下來求 a_n

我們對等式兩側(cè)乘以 %5Ccos%20mx,然后兩側(cè)進(jìn)行積分

%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)%5Ccos%20mx%20dx%20%5C%5C%0A%3D%5Cint%5E%5Cpi_%7B-%5Cpi%7Da_0%5Ccos%20mxdx%2B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20nx%5Ccos%20mx%20dx%2B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20nx%20%5Ccos%20mxdx%5C%5C%0A%3D0%2B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20nx%5Ccos%20mx%20dx%2B0

此時我們觀察到 上式僅在n=m的時候出現(xiàn)非零項

f(x)%3Df(x%2B2L)

得到

a_n%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)%5Ccos%20nx%20dx

接下來求解 b_n

我們對等式兩側(cè)乘以 %5Csin%20mx 然后對兩側(cè)進(jìn)行積分

%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)%5Csin%20mx%20dx%20%5C%5C%0A%3D%5Cint%5E%5Cpi_%7B-%5Cpi%7Da_0%5Csin%20mxdx%2B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20nx%5Csin%20mx%20dx%2B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20nx%20%5Csin%20mxdx%5C%5C%0A%3D0%2B0%2B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20nx%5Csin%20mx%20dx

此時我們觀察到 上式僅在n=m的時候出現(xiàn)非零項 %5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)%5Ccos%20nx%20dx%20%3Db_n%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csin%5E2%20nx%20dx%3Db_n%5Cpi%20

得到

b_n%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)%5Csin%20nx%20dx

那么我們得到了周期為 2%5Cpi 函數(shù)的完整傅里葉級數(shù)的展開

f(x)%3Df(x%2B2%5Cpi)%2CT%3D2%5Cpi%20%5C%5C%0Af(x)%0A%3D%20%5Cfrac%7Ba'_0%7D%7B2%7D%20%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20nx%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20nx%20%0A%3D%20a_0%20%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20nx%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20nx%20%5C%5C%20%20%0Aa'_0%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)dx%2C%20a_0%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)dx%20%5C%5C%20%20%0Aa_n%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)%5Ccos%20nxdx%20%5C%5C%20%20%0Ab_n%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)%5Csin%20nxdx

周期為2L的函數(shù)展開為傅里葉級數(shù)

拿到一個周期為T%20%3D%202L的函數(shù)? f(x)%3Df(x%2B2L)

可以直接使用換元方法? %5Cfrac%7B%5Cpi%7D%7BL%7D%3D%5Cfrac%7Bx%7D%7Bt%7D%5Crightarrow%20x%3D%5Cfrac%7B%5Cpi%7D%7BL%7Dt%20%5Crightarrow%20t%20%3D%20%5Cfrac%7BL%7D%7B%5Cpi%7Dx

f(t)%3Df(%5Cfrac%7BL%7D%7B%5Cpi%7Dx)%5Ctriangleq%20g(x)

那么我們可得到

%20x%20%3D%20%5Cfrac%7B%5Cpi%7D%7BL%7Dt%2C%5Ccos%20nx%3D%5Ccos%5Cfrac%7Bn%5Cpi%7D%7BL%7Dt%2C%5Csin%20nx%3D%5Csin%20%5Cfrac%7Bn%5Cpi%7D%7BL%7Dt%2C%5C%5C%0A%5Cint%5E%5Cpi_%7B-%5Cpi%7Ddx%3D%5Cint%5EL_%7B-L%7Dd%5Cfrac%7B%5Cpi%7D%7BL%7Dt%20%5Crightarrow%20%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Ddx%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cfrac%7B%5Cpi%7D%7BL%7D%5Cint%5EL_%7B-L%7Ddt%3D%20%5Cfrac%7B1%7D%7BL%7D%5Cint%5EL_%7B-L%7Ddt

顯然其實形式并沒有太大的變化

f(t)%3Df(t%2B2L)%2CT%3D2L%20%5C%5C%0Af(t)%0A%3D%20%5Cfrac%7Ba'_0%7D%7B2%7D%20%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20%5Cfrac%7Bn%5Cpi%7D%7BL%7Dt%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20%5Cfrac%7Bn%5Cpi%7D%7BL%7Dt%20%20%20%5C%5C%20%0Aa'_0%3D%5Cfrac%7B1%7D%7BL%7D%5Cint%5EL_%7B-L%7Df(t)dt%20%5C%5C%0Aa_n%3D%5Cfrac%7B1%7D%7BL%7D%5Cint%5EL_%7B-L%7Df(t)%5Ccos%20%5Cfrac%7Bn%5Cpi%7D%7BL%7Dtdt%5C%5C%20%20%0Ab_n%3D%5Cfrac%7B1%7D%7BL%7D%5Cint%5EL_%7B-L%7Df(t)%5Csin%20%5Cfrac%7Bn%5Cpi%7D%7BL%7Dtdt

在工程上 時間通常不會是負(fù)數(shù)? t%3E0 ?, 周期為 T%3D2L%09%2C%5Comega%20%3D%5Cfrac%7B%5Cpi%7D%7BL%7D%20%3D%5Cfrac%7B2%5Cpi%7D%7BT%7D

%5Cint%5EL_%7B-L%7D%20%5Crightarrow%20%5Cint_0%5E%7B2L%7Ddt%5Crightarrow%20%5Cint%5ET_0%20t

于是我們得到傅里葉工程表達(dá)

f(t)%3Df(t%2B2L)%2CT%3D2L%20%2C%5Comega%20%3D%5Cfrac%7B%5Cpi%7D%7BL%7D%20%3D%5Cfrac%7B2%5Cpi%7D%7BT%7D%5C%5C%0Af(t)%0A%3D%20%5Cfrac%7Ba'_0%7D%7B2%7D%20%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20n%5Comega%20t%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20n%5Comega%20t%20%0A%20%5C%5C%20%20%0Aa'_0%3D%5Cfrac%7B2%7D%7BT%7D%5Cint%5ET_0f(t)dt%20%5C%5C%20%20%0Aa_n%3D%5Cfrac%7B2%7D%7BT%7D%5Cint%5ET_0f(t)%5Ccos%20n%5Comega%20tdt%5C%5C%20%20%0Ab_n%3D%5Cfrac%7B2%7D%7BT%7D%5Cint%5ET_0f(t)%5Csin%20n%5Comega%20tdt

那么如果此時T 變?yōu)闊o限大,即函數(shù)已經(jīng)不是周期函數(shù)了,或者說 全局只有一個周期的函數(shù) ;

傅里葉級數(shù)的復(fù)數(shù)表達(dá)形式

以上述工程表達(dá)形式為例 ?

連接復(fù)數(shù)以及三角可使用歐拉公式作中介

e%5E%7Bi%5Ctheta%7D%20%3D%20%5Ccos%5Ctheta%20%2Bi%5Csin%5Ctheta%20%5C%5C%0A%5Ccos%5Ctheta%3D%5Cfrac%7B1%7D%7B2%7D(e%5E%7Bi%5Ctheta%7D%2Be%5E%7B-i%5Ctheta%7D)%20%5C%5C%0A%5Csin%5Ctheta%3D-%5Cfrac%7B1%7D%7B2%7Di(e%5E%7Bi%5Ctheta%7D-e%5E%7B-i%5Ctheta%7D)

帶入上述的工程表達(dá)得到傅里葉級數(shù)的復(fù)數(shù)表達(dá)

f(t)%20%5C%5C%3D%0A%5Cfrac%7Ba'_0%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B2%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n(e%5E%7Bin%5Comega%20t%7D%2Be%5E%7B-in%5Comega%20t%7D)%2B%5Cfrac%7B-1%7D%7B2%7Di%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n(e%5E%7Bin%5Comega%20t%7D-e%5E%7B-in%5Comega%20t%7D)%20%5C%5C%3D%0A%5Cfrac%7Ba'_0%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B2%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7D%20(a_n-ib_n)e%5E%7Bin%5Comega%20t%7D%20%2B%5Cfrac%7B1%7D%7B2%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7D(a_n%2Bib_n)e%5E%7B-in%5Comega%20t%7D

觀察上述式子 , 將第三項的n的范圍改變符號 得到 %5Cfrac%7B1%7D%7B2%7D%5Csum%5Climits%5E%7B-1%7D_%7Bn%3D-%5Cinfty%7D(a_%7B-n%7D%2Bib_%7B-n%7D)e%5E%7Bin%5Comega%20t%7D

此時可以發(fā)現(xiàn)n的取值成了n%5Cin(-%5Cinfty%2C%5Cinfty),出現(xiàn)了可以合并的項e%5E%7Bin%5Comega%20t%7D,最后式子就變?yōu)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=%5Csum%5Climits%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7DC_n%20e%5E%7Bin%5Comega%20t%7D" alt="%5Csum%5Climits%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7DC_n%20e%5E%7Bin%5Comega%20t%7D">

于是

f(t)%3D%5Csum%5Climits%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7DC_n%20e%5E%7Bin%5Comega%20t%7D%20%20%20%0A%5C%5C%20%20%0A%5Cbegin%7Bequation%7D%0AC_n%3D%0A%5Cbegin%7Bcases%7D%0A%5Cfrac%7Ba_0%7D%7B2%7D%20%2C%20n%3D0%20%5C%5C%0A%5Cfrac12(a_n-ib_n)%2Cn%3D1%2C2%2C3%2C...%20%5C%5C%0A%5Cfrac12(a_%7B-n%7D%2Bib_%7B-n%7D)%2Cn%3D-1%2C-2%2C3%2C...%20%5C%5C%0A%5Cend%7Bcases%7D%0A%5Cend%7Bequation%7D

然后將原先傅里葉級數(shù)代入,我們就會有驚奇的發(fā)現(xiàn)

n%3D0%20%5Crightarrow%20%20C_0%20%3D%5Cfrac%7Ba_0%7D%7B2%7D%20%3D%20%5Cfrac1T%20%5Cint%5Et_0f(t)dt%20%3D%5Cfrac1T%5Cint%5ET_0f(t)e%5E%7B-i0%5Comega%20t%7Ddt%20%20

%0An%3D1%2C2%2C...%20%5Crightarrow%20C_n%20%3D%5Cfrac12(a_n-ib_n)%20%5C%5C%3D%0A%5Cfrac12%5B%20%20%5Cfrac2T%20%5Cint%5ET_0%20f(t)%5Ccos%20n%5Comega%20t%20dt%20-%20i%20%5Cfrac2T%20%5Cint%5ET_0%20f(t)%5Csin%20n%5Comega%20t%20dt%20%5D%20%5C%5C%3D%0A%5Cfrac1T%5Cint%5ET_0f(t)%5B%5Ccos%20n%5Comega%20t-i%5Csin%20n%5Comega%20t%5Ddt%20%5C%5C%3D%0A%5Cfrac1T%5Cint%5ET_0f(t)%5B%5Ccos%20(-n%5Comega%20t)%2Bi%5Csin%20(-n%5Comega%20t)%5Ddt%20%5C%5C%3D%0A%5Cfrac1T%5Cint%5ET_0f(t)e%5E%7B-in%5Comega%20t%7Ddt%20%0A

%0An%3D-1%2C-2%2C...%20%5Crightarrow%20C_n%20%3D%5Cfrac12(a_%7B-n%7D%2Bib_%7B-n%7D)%20%5C%5C%3D%0A%5Cfrac12%5B%20%20%5Cfrac2T%20%5Cint%5ET_0%20f(t)%5Ccos%20(-n%5Comega%20t%20)dt%20%2B%20i%20%5Cfrac2T%20%5Cint%5ET_0%20f(t)%5Csin%20(-n%5Comega%20t)%20dt%20%5D%20%5C%5C%3D%0A%5Cfrac1T%5Cint%5ET_0f(t)%5B%5Ccos%20n%5Comega%20t-i%5Csin%20n%5Comega%20t%5Ddt%20%5C%5C%3D%0A%5Cfrac1T%5Cint%5ET_0f(t)%5B%5Ccos%20(-n%5Comega%20t)%2Bi%5Csin%20(-n%5Comega%20t)%5Ddt%20%5C%5C%3D%0A%5Cfrac1T%5Cint%5ET_0f(t)e%5E%7B-in%5Comega%20t%7Ddt%20%0A

因此完全可以使用一個式子來表達(dá)這系數(shù)內(nèi)涵的三項,此時復(fù)數(shù)形式的傅里葉級數(shù)變得非常簡單;

f(t)%3Df(t%2BT)%2C%5Comega%20%3D%20%5Cfrac%7B2%5Cpi%7DT%5C%5C%0Af(t)%3D%5Csum%5Climits%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7DC_n%20e%5E%7Bin%5Comega%20t%7D%20%20%5C%5C%20%0AC_n%3D%5Cfrac1T%20%5Cint%5ET_0f(t)e%5E%7B-in%5Comega%20t%7Ddt

傅里葉變換 FT

我們已經(jīng)得到了傅里葉級數(shù)的復(fù)數(shù)表達(dá);

上述函數(shù)原表達(dá),求和式,以及系數(shù)式

其求和式中%5Csum%5Climits%5E%5Cinfty_%7B-%5Cinfty%7De%5E%7Bin%5Comega_0%20t%7D 兩者 對于任意的傅里葉級數(shù)都是一樣,已經(jīng)是一種固定規(guī)則了,僅僅由C_n來決定不同樣式的傅里葉級數(shù),這系數(shù)是一個復(fù)數(shù);

其實把求和式展開,%20...%20%2B%20c_%7B-1%7De%5E%7B-i(-1)%5Comega_0%20t%7D%2B%20c_%7B0%7De%5E0%2B%20c_1%20e%5E%7Bi(1)%5Comega_0%20t%7D%2B%20c_2e%5E%7B-i(2)%5Comega_0%20t%7D%20%2B... , 表現(xiàn)為如下右圖;

時域頻域圖

就上圖來說,左邊在工程中總是稱為時域,畢竟和事件有關(guān),右側(cè)表達(dá)的是系數(shù)在不同頻率下的大小不同,即每次都以某個頻率作為基礎(chǔ),作加權(quán),并對其各頻率加權(quán)結(jié)果之總和就是原函數(shù);

上述是周期函數(shù)的情況;

那么如果一個函數(shù)不是周期函數(shù),或者說整個函數(shù)就一個周期?

那么其周期就趨于無窮,此時就成了一般函數(shù) %5Clim%5Climits_%7BT%5Cto%5Cinfty%7Df_T(t)-f(t)%20

對基頻率來說 T%20%5Cto%20%5Cinfty%20,此時%5CDelta%5Comega%20%3D%20(n%2B1)%5Comega_0-n%5Comega_0%3D%5Comega_0%20%3D%20%5Cfrac%7B2%5Cpi%7DT%20周期增加導(dǎo)致頻率間隔變小,當(dāng)趨于無窮則頻率間隔無限??;此時我們可以將傅里葉級數(shù)頻率的離散情況,轉(zhuǎn)為連續(xù)情況,即各個有微小差異的頻率稠密的順序排在一起組成了頻率函數(shù)(離散級數(shù)成連續(xù)函數(shù));

把系數(shù)式代入求和式 ?得到 混合式:

f_T(t)%3D%5Csum%5Climits%5E%7B%5Cinfty%7D_%7Bn%3D-%5Cinfty%7D%5Cfrac1T%20%5Cint%5E%7B%5Cfrac%20T2%7D_%7B-%5Cfrac%20T2%7Df_T(t)e%5E%7B-in%5Comega_0%20t%7Ddt%20e%5E%7Bin%5Comega_0%20t%7D%2C%5Cfrac1T%3D%5Cfrac%7B%5CDelta%5Comega%7D%7B2%5Cpi%7D%EF%BC%8CT%20%5Cto%20%5Cinfty

可見當(dāng)周期無限時會出現(xiàn)如下情況:

%20%20%5Cint%5E%7B%5Cfrac%20T2%7D_%7B-%5Cfrac%20T2%7D%20dt%20%5Cto%20%5Cint%5E%5Cinfty_%7B-%5Cinfty%7D%20dt%20%5C%5C%0A%20%20%20n%5Comega_0%20%5Cto%20%5Comega%20%20%5C%5C%0A%5Csum%5Climits%5E%7B%5Cinfty%7D_%7Bn%3D-%5Cinfty%7D%5CDelta%5Comega%5Cto%20%5Cint%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7Dd%5Comega

將這些變化代入上述混合式得到:

%5Cfrac1%7B2%5Cpi%7D%20%5Cint%5E%5Cinfty_%7B-%5Cinfty%7D%5Cint%5E%5Cinfty_%7B-%5Cinfty%7Df(t)e%5E%7B-i%5Comega%20t%7D%20dt%20%5C%20%20e%5E%7Bi%5Comega%20t%7D%20d%5Comega

而整體拿出來 就是傅里葉逆向變換 IFT

f(t)%3D%5Cfrac1%7B2%5Cpi%7D%20%5Cint%5E%5Cinfty_%7B-%5Cinfty%7DF(%5Comega)%20e%5E%7Bi%5Comega%20t%7D%20d%5Comega

傅里葉變換簡化寫法就是拉普拉斯變換 Lplace-Transform ? LT

F(S)%3D%5Cint%5E%5Cinfty_%7B-%5Cinfty%7Df(t)e%5E%7B-S%20t%7D%20dt

?


工程數(shù)學(xué)附錄_傅里葉級數(shù)與傅里葉變換的評論 (共 條)

分享到微博請遵守國家法律
木兰县| 济源市| 榆社县| 醴陵市| 天长市| 双流县| 卢氏县| 林州市| 新兴县| 平邑县| 蕉岭县| 庄浪县| 红安县| 西丰县| 丹阳市| 墨江| 房产| 上犹县| 商南县| 宣汉县| 邢台县| 潼南县| 万州区| 会昌县| 汕头市| 平乡县| 绩溪县| 尼勒克县| 瓮安县| 航空| 鲁甸县| 余姚市| 合肥市| 江都市| 上蔡县| 独山县| 新民市| 通许县| 怀仁县| 阿拉善左旗| 磴口县|