最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

量化交易機器人系統(tǒng)開發(fā)詳細(xì)及策略丨量化合約/合約量化系統(tǒng)開發(fā)成熟及技術(shù)丨源碼案例

2023-04-04 14:00 作者:bili_56252132691  | 我要投稿

  The two main uses of quantitative trading robots are to make markets through arbitrage;When the market is relatively cold,act as the corresponding seller or buyer,and activate trading volume in the market;After initializing the setting parameters,the quantitative trading robot will trade according to the strategy,automatically buying or selling when the set conditions are met,without the need for long-term trading;Strictly implement trading strategies based on the new market situation;Real time viewing of transaction conditions to ensure real-time execution of transactions;Try to avoid adverse effects caused by human subjective factors as much as possible.


  量化策略是指使用計算機作為工具,通過一套固定的邏輯來分析、判斷和決策。量


  化策略既可以自動執(zhí)行,也可以人工執(zhí)行;開發(fā)策略及詳情唯:MrsFu123,從本質(zhì)上說,交易機器人是一種軟件程序,它直接與金融交易所進(jìn)行交互(通常使用API獲取和解釋相關(guān)信息),并根據(jù)市場數(shù)據(jù)的解釋發(fā)出買賣訂單。


  這是一個PPQ量化的入口腳本,將你的模型和數(shù)據(jù)按要求進(jìn)行打包:


  This file will show you how to quantize your network with PPQ


  You should prepare your model and calibration dataset as follow:


  ~/working/model.onnx<--your model


  ~/working/data/*.npy or~/working/data/*.bin<--your dataset


  if you are using caffe model:


  ~/working/model.caffemdoel<--your model


  ~/working/model.prototext<--your model


  ###MAKE SURE YOUR INPUT LAYOUT IS[N,C,H,W]or[C,H,W]###


  quantized model will be generated at:~/working/quantized.onnx


  """


  from ppq import*


  from ppq.api import*


  import os


  #modify configuration below:


  WORKING_DIRECTORY='working'#choose your working directory


  TARGET_PLATFORM=TargetPlatform.PPL_CUDA_INT8#choose your target platform


  MODEL_TYPE=NetworkFramework.ONNX#or NetworkFramework.CAFFE


  INPUT_LAYOUT='chw'#input data layout,chw or hwc


  NETWORK_INPUTSHAPE=[1,3,224,224]#input shape of your network


  CALIBRATION_BATCHSIZE=16#batchsize of calibration dataset


  EXECUTING_DEVICE='cuda'#'cuda'or'cpu'.


  REQUIRE_ANALYSE=False


  DUMP_RESULT=False#是否需要Finetuning一下你的網(wǎng)絡(luò)


  #SETTING對象用于控制PPQ的量化邏輯


  #當(dāng)你的網(wǎng)絡(luò)量化誤差過高時,你需要修改SETTING對象中的參數(shù)進(jìn)行特定的優(yōu)化


  SETTING=UnbelievableUserFriendlyQuantizationSetting(


  platform=TARGET_PLATFORM,finetune_steps=2500,


  finetune_lr=1e-3,calibration='kl',#【改】量化算法可選'kl','pecentile','mse'


  equalization=True,non_quantable_op=None)


  SETTING=SETTING.convert_to_daddy_setting()


  print('正準(zhǔn)備量化你的網(wǎng)絡(luò),檢查下列設(shè)置:')


  print(f'WORKING DIRECTORY:{WORKING_DIRECTORY}')


  print(f'TARGET PLATFORM:{TARGET_PLATFORM.name}')


  print(f'NETWORK INPUTSHAPE:{NETWORK_INPUTSHAPE}')


  print(f'CALIBRATION BATCHSIZE:{CALIBRATION_BATCHSIZE}')


  #此腳本針對單輸入模型,輸入數(shù)據(jù)必須是圖像數(shù)據(jù)layout:[n,c,h,w]


  #如果你的模型具有更復(fù)雜的輸入格式,你可以重寫下面的load_calibration_dataset函數(shù)


  #請注意,任何可遍歷對象都可以作為PPQ的數(shù)據(jù)集作為輸入


  dataloader=load_calibration_dataset(


  directory=WORKING_DIRECTORY,


  input_shape=NETWORK_INPUTSHAPE,


  batchsize=CALIBRATION_BATCHSIZE,


  input_format=INPUT_LAYOUT)


  print('網(wǎng)絡(luò)正量化中,根據(jù)你的量化配置,這將需要一段時間:')


  quantized=quantize(


  working_directory=WORKING_DIRECTORY,setting=SETTING,


  model_type=MODEL_TYPE,executing_device=EXECUTING_DEVICE,


  input_shape=NETWORK_INPUTSHAPE,target_platform=TARGET_PLATFORM,


  dataloader=dataloader,calib_steps=32)


量化交易機器人系統(tǒng)開發(fā)詳細(xì)及策略丨量化合約/合約量化系統(tǒng)開發(fā)成熟及技術(shù)丨源碼案例的評論 (共 條)

分享到微博請遵守國家法律
佛冈县| 鹤峰县| 鹤山市| 湖南省| 肥城市| 桂东县| 顺昌县| 台北县| 宁河县| 博爱县| 丹凤县| 南江县| 明溪县| 尖扎县| 葫芦岛市| 甘谷县| 朔州市| 加查县| 定远县| 美姑县| 黑河市| 镇原县| 新平| 保德县| 芷江| 太白县| 宁河县| 渝中区| 定日县| 桃江县| 新泰市| 莱芜市| 芒康县| 漳平市| 铜陵市| 景谷| 民勤县| 扎赉特旗| 塔城市| 尚志市| 梓潼县|